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Sortition is based on the idea of choosing randomly selected representatives for
decision making. The main properties that make sortition particularly appealing
are fairness — all the citizens can be selected with the same probability— and
proportional representation — a randomly selected panel probably reflects the
composition of the whole population. When a population lies on a representation
metric, we formally define proportional representation by using a notion called
the core. A panel is in the core if no group of individuals is underrepresented
proportional to its size. While uniform selection is fair, it does not always return
panels that are in the core. Thus, we ask if we can design a selection algorithm
that satisfies fairness and ex post core simultaneously. We answer this question
affirmatively and present an efficient selection algorithm that is fair and provides
a constant-factor approximation to the optimal ex post core. Moreover, we show
that uniformly random selection satisfies a constant-factor approximation to the
optimal ex ante core. We complement our theoretical results by conducting ex-
periments with real data.

1. Introduction
In the last centuries, representative democracy has become synonymous with elections. How-
ever, this has not been the case throughout history. Since ancient Athens, the random selec-
tion of representatives from a given population has been proposed as a means of promoting
democracy and equality (Van Reybrouck, 2016). Sortition has gained significant popularity
in recent years, mainly because of its use for forming citizens’ assemblies, where a randomly
selected panel of individuals deliberates on issues and makes recommendations. Currently,
citizens’ assemblies are being implemented by more than 40 organizations in over 25 coun-
tries (Flanigan et al., 2021a).

Recently, there has been a growing interest within the computer science research community
in designing algorithms that select representative panels fairly and transparently (Flanigan
et al., 2020, 2021a,b; Ebadian et al., 2022). Admittedly, a straightforward method for selecting
a representative panel of size k from a given population of size n is to randomly select
k individuals uniformly (Engelstad, 1989). We refer to this simple procedure as uniform
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selection. As highlighted by Flanigan et al. (2020), two main reasons make this method
particularly appealing:

1. Fairness: Each citizen is included in the panel with the same probability, satisfying the
requirement of equal participation. Specifically, each citizen is selected with a probabil-
ity of k/n

2. Proportional Representation: The selected panel is likely to mirror the structure of the
population, since if x% of the population has specific characteristics, then in expecta-
tion, x% of the panel will consist of individuals with these characteristics. For instance,
if the female share of the population is 48%, then in expectation, 48% of the panel will
be females.

Indeed, uniform selection seems to achieve proportional representation ex ante (before the
randomness is realized), since in expectation the selected panel reflects the composition of the
population, especially when the size of the panel is very large. However, one of the critiques
of this sampling procedure is that with non-zero probability, a panel that completely excludes
certain demographic groups can be selected (Engelstad, 1989). For example, if the population
is split evenly between college-educated and college-uneducated individuals, there’s a chance
that uniform selection could result in a panel consisting solely of college-educated individuals.
To address such extreme cases, various strategies have been proposed to ensure proportional
representation ex post (after the randomness is realized) (Martin and Carson, 1999).

One common strategy is the use of stratified sampling (Gąsiorowska, 2023). The idea is that
the individuals are partitioned into disjoint groups and then a proportional number of repre-
sentatives is sampled uniformly at random from each group. For example, if the population
comprises 49% college-educated individuals and 51% college-uneducated individuals, then we
can choose 49% of the representatives from the first group and the remaining representatives
from the other group. This idea can be extended to ensure proportional representation across
intersectional features as well. For instance, in a population characterized by the level of
education and the income, we can define four groups: college-educated low-income, college-
educated high-income, college-uneducated low-income, and college-uneducated high-income
and then sample from each group separately. However, this approach becomes impractical
when dealing with a large predefined set of features, as the number of possible groups can
grow exponentially, and there may not be enough seats in the panel to represent all of them.
A more general approach, extensively used in practice, is to set quotas over individual or set
of features (Flanigan et al., 2020; Vergne, 2018). Similar to stratified sampling, when aiming
for proportional representation across all intersectional features, the number of quotas can
become exponential, making it infeasible to satisfy all of them concurrently. Alternatively,
one may opt for setting quotas over a subset of intersectional features. For instance, quotas
could be set for gender and race simultaneously, along with additional quotas for income.
However, this might not ensure the representation of specific subgroups, such as high-income
black women.

The presence of the above challenges in existing strategies prompts a need for alternative
approaches for ensuring proportional representation. This, in turn, highlights the necessity
of rigorously defining proportional representation first. Our work departs from these obser-
vations, and we aim to address the following questions:
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1. What is a formal definition of proportional representation of a population?

2. To what extent does uniform selection satisfy proportional representation?

3. Is it possible to design selection algorithms that enhance representation guarantees while
maintaining fairness?

1.1. Our approach
Proportional Representation via Core. We begin by tackling the first question posed above.
Intuitively, a panel can be deemed proportionally representative if each group of size s within
a population of n individuals is represented by s/n · k members in the panel, out of the total
k representatives selected. Motivated by this intuition, we borrow a notion of proportional
representation used by recent works on multiwinner elections, fair allocation of public goods
and clustering (Aziz et al., 2017; Fain et al., 2018; Conitzer et al., 2019; Cheng et al., 2020;
Chen et al., 2019), called the core. The main idea of the core is: Every subset S of the
population is entitled to choose up to |S|/n · k representatives. Formally, a panel P is called
proportionally representative, or is said to be in the core, if there does not exist a subset
S of the population that could choose a panel P ′, with |P ′| ≤ |S|/n · k, under which all of
them feel more represented. Note that this notion is not defined over predefined groups using
particular features, but it provides proportional representation in the panel to every subset
of the population.

Representation Metric Space. A conceptual challenge is to quantify the extent to which
a panel represents an individual. To address this, we use the same approach as taken by
Ebadian et al. (2022) in which it is assumed that the individuals lie in an underlying repre-
sentation metric space. The representation metric space can be constructed as a function of
features that are of particular interest for an application at hand, such as gender, age, eth-
nicity and education. Significantly, our results depend only on the existence of such a metric
space without further assumptions. Intuitively, the construction of such a metric space elim-
inates the necessity of partitioning individuals into groups that all share exactly the same
characteristics. Instead, it serves as a means of detecting large groups of individuals that
share similar characteristics and are eligible to be represented proportionally. For example,
a 30-year-old single, low-income black woman might still feel close to a 35-year-old married,
medium-income black woman, since they share many characteristics, even if they differ in
some of them.

q-Cost. Finally, to measure the degree to which an individual is represented by a panel
again, we take the approach of Ebadian et al. (2022), following a recent work of Caragiannis
et al. (2022) in multiwinner elections. Specifically, the cost of an individual for a panel is
determined by her distance from the q-th closest member in the panel, for some q ∈ [k]. We
find this choice of cost suitable for applications related to sortition due to two main reasons.
First, an individual may not care about her distance to all the representatives, but she may
wish to ensure that there are a few with whom she can relate. For example, a woman may
want to ensure that there are at least a few women on a panel to represent her, without nec-
essarily requiring the entire panel to be composed of females, which would not be reasonable.
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Second, it effectively differentiates between panels containing representatives whom an indi-
vidual can readily relate to and panels where representatives are more distant from her. For
instance, consider an individual aged 40, a panel that includes 2 representatives aged 40, one
representative aged 20, and one representative aged 60 and another panel consisting of two
representatives aged 30 and two representatives aged 50. The individual may feel represented
by at least two people in the former panel, and therefore for q = 2 her cost would be low.
While for the second panel her cost would be higher since no representative is that close to
her. In contrast, natural alternatives such as the average distance would fail to capture this
difference since both panels would have the same average distance from her. The choice of
q depends on the application at hand. In this work, we provide selection algorithms that do
not require knowledge of the value of q but offer guarantees for any value of it.

1.2. Our Contribution
Our primary conceptual contribution lies in introducing the core, in the context of sortition.
Before delving into our work, we discuss the relevant literature that has provided inspira-
tion and insights for our research. The idea of using the core as a means of measuring the
proportional representation that a panel provides to a population, lying in a metric space,
was first introduced by Chen et al. (2019) in a clustering setting. In our terms, Chen et al.
(2019) consider the case of q = 1, i.e., each individual cares for her distance from her closest
representative, while in this work, we extend the notion of core to the class of q-cost functions.
They show that a solution in the core is not guaranteed to exist and define a multiplicative
approximation of it with respect to the cost improvement of all individuals eligible to choose
a different panel. They introduce an algorithm, called Greedy Capture, that returns a so-
lution in the (1 +

√
2)-approximate core. Roughly speaking, the algorithm partitions the n

individuals into k parts by smoothly increasing balls in the underlying metric space around
each individual and greedily creating a part whenever a ball captures n/k individuals that
have not already been captured. The centers of the balls serve as the representatives.

In a sortition setting,in addition to proportional representation of all groups, it is important
to ensure the fairness constraint which is that all individuals have the same chance of being
included in the panel. For ensuring that, a selection algorithm should return distribution over
panels of size k, and not a deterministic panel as in the clustering setting. Therefore, in this
work we ask for selection algorithms that are simultaneously in the ex post core, meaning
that every panel that the algorithm might return, is in the core, and simultaneously is fair,
meaning that each individual is included in the panel with probability equal to k/n.

In Section 3, as one would expect, we demonstrate that uniform selection, despite satisfying
fairness by its definition, falls short of achieving any reasonable approximation to the ex post
core for almost any q, with only exception being q = k. This is due to the fact that when
q = k, any panel inherently belongs to the 2-approximate ex post core, as we will show
later. We then pose the question: Is there any selection algorithm that is fair and achieves
an O(1)-approximation to the ex post core? The answer is affirmative. We introduce an
efficient selection algorithm, denoted as FairGreedyCapture, that is fair and is in the
6-approximate ex post core for every value of q ∈ [k]. In some sense, this guarantees the
best of both worlds, as we provide an algorithm that preserves the positive characteristic of
uniform selection, namely fairness, and additionally, it ensures that any realized panel is in
the O(1)-approximate ex post core. Again loosely speaking, FairGreedyCapture creates
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k parts using Greedy Capture which “opens” a ball in the metric space when a sufficiently
number of individuals fall into it. In contrast to Greedy Capture, which selects the center
of the ball as a representative, FairGreedyCapture assigns probabilities of selection to
individuals within the ball, ensuring that the sum of these probabilities equals to 1. This
ensures the selection of one representative from each ball. Additionally, to ensure fairness,
a total fraction of k/n is assigned to each individual across the k balls. Then, leveraging
Birkhoff’s decomposition algorithm, we find a distribution over panels of size k, where each
panel contains at least one representative from each ball, and each individual is selected with
a probability of k/n. We complement this result by showing that no fair selection algorithm
provides an approximation better than 2 to the ex post core.

In Section 4, we turn our attention to the question: Is uniform selection in the ex ante
core? As previously mentioned, uniform selection seems to satisfy the ex ante core, at least
for large panels, since, in expectation, a panel is proportionally representative. Here, we
investigate whether this is true for all values of k and q. In particular, we define a selection
algorithm to be in the ex ante core if, for any panel P , the expected number of individuals
who feel more represented by P than panels chosen from the selection algorithms is less than
|P |/n ·k. This indicates that no other panel receives significant support, in expectation. First,
we show that for q = k, uniform selection is in the ex ante core. However, for q < k, no fair
selection algorithm is in the ex ante core. Therefore, as before, we define o a multiplicative
approximation with respect to the cost improvement. We demonstrate that uniform selection
provides an approximation of 4 to the ex ante core. On the other hand, we show that no fair
selection algorithm provides an approximation better than 2 to the ex ante core.

In Section 5, we explore the question of whether, given a panel P , there is any way to
determine if it satisfies an approximation of the ex post core for a value of q. This can be
useful when a panel has been sampled using a selection algorithm that does not provide
any guarantees for the ex post core. We show that given a panel P , we can approximate, in
polynomial time, how much it violates the core up to constants.

Finally, in Section 6, we empirically evaluate the approximation of uniform selection and
FairGreedyCapture to the ex post core on constructed metrics derived from two demo-
graphic datasets. We notice that for large values of q, uniform selection achieves an approx-
imation to the ex post similar to the one that FairGreedyCapture achieves. For smaller
values of q, when the individuals form cohesive parts, uniform selection has unbounded ap-
proximation very often. However, when the individuals are well spread in the space, uniform
selection achieves a good approximation of the ex post core. Thus, the decision of using
uniform selection depends on the value of q and the structure of the population.

1.3. Related Work
Ebadian et al. (2022) recently considered the same question of measuring the representation
that a panel or a selection algorithm achieves in a rigorous way. As we mentioned above,
they also assume the existence of a representative metric space and use the distance of the
q-th closest representative in the panel to measure to what degree a panel represents an
individual. However, they use the social cost (i.e. the sum of individual costs) to measure
how much a panel represents the whole population. In Appendix A, we show that this measure
of representation may fail to achieve the idea of proportional representation. Moreover, while
a reasonable approximation of their notion of representation is, in some cases, incompatible
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with fairness (i.e., each individual is included in the panel with the same probability), in this
work, we show that there are selection algorithms that achieve a constant approximation of
proportional representation and fairness simultaneously

As we discussed above, a method that is used in practice for enforcing representation is
by setting quotas over features. However, a problem that appears is that only a few people
volunteer to participate in a decision panel. As a result, the representatives are selected from
a pool of volunteers which usually does not reflect the composition of the population, since
for example highly educated people are usually more willing to participate in a decision panel
than less educated people. Flanigan et al. (2021a) proposed selection algorithms that, given
a biased pool of volunteers, find distributions that maximize the minimum selection proba-
bility of any volunteer over panels that satisfy the desired quotas. In this work, similar to
Ebadian et al. (2022) and Benadè et al. (2019), we focus on the pivotal idea of a sortition
based democracy that relies on sampling representatives directly from the underlying popula-
tion (Gastil and Wright, 2019). However, later, we discuss how our approach can be modified
for being applied in biased pools of volunteers. Benadè et al. (2019) focused on the idea of
stratified sampling and asked how this strategy may affect the variance of the representation
of unknown groups. Flanigan et al. (2021b) studied how the selection algorithms can become
transparent as well. In a more recent work, Flanigan et al. (2024) studied the manipulability
of different selection algorithms, i.e the incentives of individuals to misreport their features.

The representation of individuals as having an ideal point in a metric space has its roots
to the spatial model of voting (Arrow, 1990; Enelow and Hinich, 1984). As we mentioned
above, the idea of using the core as a notion of proportional representation in a metric space
was first introduced by Chen et al. (2019), and later revisited by Micha and Shah (2020),
in a clustering setting. Proportional representation in clustering has also been studied by
Aziz et al. (2023) and Kalayci et al. (2024). The definition by Aziz et al. (2023) is quite
similar to the core, with the basic difference being that each dense group explicitly requires a
sufficient number of representatives. Kalayci et al. (2024) consider a version of the core where
an agent’s cost for the panel is the sum of the distance of each representative, and a group is
incentivized to deviate to another solution if the overall group can reduce the sum of costs. A
drawback of both the definition of the core we use in this paper and Greedy Capture, which
was mentioned by Aziz et al. (2023) and Kalayci et al. (2024), is that a dense group might
end up being represented by just one individual. This happens because Greedy Capture keeps
expanding opened balls, and when a new individual is captured by such a ball, it disregards
it by implicitly assuming that this individual is already represented. We stress that while
our notion of the core does not explicitly account for this problem, FairGreedyCapture
does not expand balls that are already open, and thus, it does not suffer from this weakness.
More broadly, the implicitly goal of clustering is to find a set of k centers that represent all
the data points in an underlying metric space. As discussed by Chen et al. (2019) in their
work, the classic objectives, namely k-center, k-means, and k-median objectives, are deemed
incompatible with the core. Consequently, they do not align with the notion of proportional
representation desired in this work. The literature has explored various notions of fairness
in clustering (Chhabra et al., 2021). Recently, Kellerhals and Peters (2023) establish links
among the numerous concepts related to fairness and proportionality in clustering.

Proportional representation through core has been extensively studied in the context of
multiwinner elections as well (Aziz et al., 2017; Faliszewski et al., 2017; Lackner and Skowron,
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2023; Fain et al., 2018). The problem of selecting a representative panel can be framed as
a committee election problem, where the candidates are drawn from the same pool as the
voters. While in these works, the voters and the candidates do not lie in a metric space, but
instead the voters hold rankings over candidates, in our model, the rankings could derive from
the underlying metric space. Due to impossibility results (Cheng et al., 2020), relaxations of
the core have been studied. The ex ante core, as defined here, was introduced by Cheng et al.
(2020). They show that, without the fairness constraint, the ex ante core can be guaranteed.
In this work, we show that by imposing this fairness constraint, an approximation to the ex
ante q-core better than 2 is impossible, for all q ∈ [k − 1].

2. Preliminaries
For t ∈ N, let [t] = {1, . . . , t}. We denote the population by [n]. A panel P is defined as a
subset of the population. The n individuals lie in an underlying representation metric space
with distance function d. The distance between individuals i and j is denoted as d(i, j).
We assume that the distances are symmetric, i.e., d(i, j) = d(j, i), and satisfy the triangle
inequality, i.e., d(i, j) ≤ d(i, ℓ) + d(ℓ, j). An instance of our problem is characterized by the
individuals in the population and the distances among them. Henceforth, we simply refer to
such an instance as d.

We consider a class of cost functions to measure the cost of an individual i within a panel
P . For q ∈ [k], we define the q-cost of i for P as the distance to her q-th closest member
in the panel, denoted by cq(i, P ; d). When q = 1, the cost of an individual is equal to her
distance from her closest representative in the panel, and for q = k, the cost is equal to her
distance from her furthest representative in the panel. We denote by topq(i, P ; d) the set of
the q closest representatives of i in a panel P (with ties broken arbitrarily). Additionally,
B(i, r; d) represents the set of individuals captured from a ball centered at i with a radius of
r, i.e., B(i, r; d) = {i′ ∈ [n] : d(i, i′) ≤ r}. We may omit d from the notation when clear from
the context.

A selection algorithm, denoted by Ak, is parameterized by k and takes as input the metric
d and outputs a distribution over all panels of size k. We say that a panel is in the support of
Ak, if it is implemented with positive probability under the distribution that Ak outputs. We
pay special attention to the uniform selection algorithm, denoted by Uk, that always outputs
a uniform distribution over all the subsets of the population of size k.

Fairness. As mentioned above, one of the appealing properties of uniform selection is
that each individual is included in the panel with the same probability. We call this property
fairness and we say that a selection algorithm is fair if:

∀i ∈ [n], PrP ∼Ak
[i ∈ P ] = k/n.

Core. Another appealing property of sortition is proportional representation. Here, we
utilize the idea of the core to measure the proportional representation of a panel and, by
extension, of a selection algorithm. To do so, we first introduce the following definition: For
α ≥ 1, the α-q-preference count of P with respect to P ′ is the number of individuals whose
q-cost under P is larger than α times their q-cost under P ′:

Vq(P, P ′, α) = |{i ∈ [n] : cq(i, P ) > α · cq(i, P ′)}|.
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A panel P is in the α-q-core, if for any panel P ′, Vq(P, P ′, α) < |P ′| · n/k. For α = 1, we say
that the panel is in the q-core. We define α-q-core for α > 1, since even when q = 1, a panel
in the exact q-core is not guaranteed to exist (Chen et al., 2019; Micha and Shah, 2020).

Ex Post q-Core. A selection algorithm Ak is in the ex post α-q-core (or ex post q-core, for
α = 1) if every panel P in the support of Ak is in the α-q-core, i.e., for all P drawn from Ak

and all P ′,
Vq(P, P ′, α) < |P ′| · n/k.

Ex Ante q-Core. A selection algorithm Ak is in the ex ante α-q-core (or ex ante q-core, for
α = 1) if for all P ′:

EP ∼Ak
[Vq(P, P ′, α)] < |P ′| · n

k
.

The idea of requiring a core-like property over the expected number of preference counts
was introduced by Cheng et al. (2020) in a multi-winner election setting. Essentially, it states
that for any panel P ′, if, for any realized panel P , we count the number of individuals that
reduce their cost by a multiplicative factor of at least α under P ′, in expectation, this number
is less than |P ′| · n/k. Therefore, in expectation, they are not eligible to choose it.

It is easy to see that ex post α-core implies ex ante α-core, since if for each P in the support
of a distribution that Ak returns and each P ′, it holds that Vq(P, P ′, α) < |P ′| · n/k, then
EP ∼Ak

[Vq(P, P ′, α)] < |P ′| · n/k.

3. Fairness and Ex Post Core
In this section, we investigate if there are selection algorithms that are fair, and in addition,
provide a constant approximation to the ex post q-core. Unsurprisingly, uniform selection
may fail to provide any bounded approximation to the ex post q-core for q ∈ [k − 1] 1. This
happens because each panel has a nonzero probability of selection, and there may exist panels
with arbitrarily large violations of the q-core objective.

Theorem 1. For any q ∈ [k − 1] and ⌊n/k⌋ ≥ k, there exists an instance such that uniform
selection is not in the ex post α-q-core for any bounded α.

Proof. Consider an instance in which there are ⌊n/k⌋ individuals in group A and the remaining
individuals are in group B. Suppose that the distance between any two individuals in the
same group is 0, and the distance between any two individuals in different groups is 1. Since,
⌊n/k⌋ ≥ k, uniform selection has a non-zero probability of returning a panel where all the
representatives are from group A. In this scenario, for any q ∈ [k − 1], the q-cost of all the
individuals in group B is equal to 1. However, individuals in group B are entitled to choose
up to k − 1 representatives among themselves, and if they do so, their q-cost becomes 0,
resulting in an unbounded improvement of their q-cost. Therefore, uniform selection is not
in the ex post α-q-core for any bounded α.

1For q = k, we show in Appendix B that all panels lie in the 2 approximation of the k-core; hence, any
algorithm including uniform selection provides an ex post 2-k-core.
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ALGORITHM 1: FairGreedyCapturek

Input: [n], d
Output: Pℓ and λℓ, for ℓ ∈ [L], where each Pℓ represents a panel of size k and λℓ represents its

probability of being selected
/* Create a (k/n)-fractional allocation by distributing a k/n fraction for each

individual among k balls, ensuring that each ball contains a total fractional
amount equal to 1. */

X ← [0]k×n; δ ← 0; j ← 1; {yi ← k/n}i∈[n];
while

∑
i∈[n] yj > 0 do

Smoothly increase δ;
while ∃i ∈ [n], such that

∑
i′∈B(i,δ) yi′ ≥ 1 do

while Xj =
∑

i∈[n] Xj,i < 1 do
Pick i′ ∈ B(i, δ) with xi′ > 0;
Xj,i′ ← min(1−Xj , yi);
yi ← yi −Xj,i′ ;

end
j ← j + 1;

end
end
/* Apply Birkhoff’s decomposition */
X ′ ← [1/n](n−k)×n;

Let Y =
[

X
X ′

]
;

Compute a decomposition of Y =
∑L

ℓ=1 λℓY
ℓ using the Birkhoff’s decomposion (Theorem 2);

for ℓ = 1 to L do
Pℓ ←

{
i ∈ [n] | Y ℓ

j,i = 1 for some j ≤ k
}

end
return distribution over L panels {Pℓ}ℓ∈[L] where Pℓ is selected with probability λℓ

Therefore, we ask: For every q, is there any selection algorithm that keeps the fairness
guarantee of uniform selection and ensures that every panel in its support is in the constant
approximation of the q-core? We answer this positively.

We present a selection algorithm, called FairGreedyCapturek, that is fair and in the ex
post 6-q-core, for every q ∈ [k]. We highlight that the algorithm does not need to know the
value of q. Our algorithm leverages the basic idea of the Greedy Capture algorithm introduced
by Chen et al. (2019), which returns a panel in the (1 +

√
2) ≊ 2.42-approximation of the

1-core. Note that this algorithm is deterministic and need not satisfy fairness. Briefly, Greedy
Capture starts with an empty panel and grows a ball around all individuals at the same rate.
When a ball captures at least ⌈n/k⌉ individuals for the first time, the center of the ball is
included in the panel and all the captured individuals are disregarded. The algorithm keeps
growing balls on all individuals, including the opened balls. As the opened balls continue to
grow and capture more individuals, the newly captured ones are immediately disregarded as
well. Note that the final panel can be of size less than k.

At a high level, FairGreedyCapturek, as outlined in Algorithm 1, operates as follows:
it greedily opens k balls using the basic idea of the Greedy Capture algorithm, ensuring each
ball contains sufficiently many individuals. In contrast to Greedy Capture, which selects the
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centers of the balls as the representatives, our algorithm probabilistically selects precisely one
individual from each of the k balls.

Before, we describe the algorithm in more detail, we define a (k/n)-fractional allocation as
a non-negative k × n matrix X ∈ [0, 1]k×n where entries in each row sums to 1 and entries
in each column sum to k/n, i.e., for each i ∈ [n],

∑
j∈[k] Xj,i = k/n, and for each j ∈ [k],∑

i∈[n] Xj,i = 1. The algorithm, during its execution, generates a (k/n)-fractional allocation
X of individuals in [n] into k balls, where Xj,i denotes the fraction of individual i assigned
to ball j. We say that an individual i is assigned to ball j, if Xj,i > 0. An individual can be
assigned to more than one balls.

The (k/n)-fractional allocation X is generated as follows. Denote the unallocated part of
each individual i by yi. Start with yi = k/n. This corresponds to the fairness criterion that
we allocate a k/n probability of selection to each individual. Algorithm 1 grows a ball around
every individual in [n] at the same rate. Suppose a ball captures individuals whose combined
unallocated parts sum to at least 1. Then, we open this ball and from individuals i′ captured
by this ball with yi′ > 0, we arbitrarily remove a total mass of exactly 1 and assign it to the
ball. This can be done in various ways, e.g., greedily pick an individual i′ with positive yi′

and allocate min{1−
∑

i∈[n] Xj,i, yi′} fraction of it to the corresponding row (i.e. ball). This
procedure terminates when the k/n fraction of each individual is fully allocated. Note that
since each time a ball opens, a total mass of 1 is deducted from yi-s and, for each i ∈ [n], yi

starts with a fraction of k/n, exactly k balls are opened.

Sampling panels from the (k/n)-fractional allocation. Next, we show a method of decom-
posing X, the (k/n)-fractional allocation, to a distribution over panels of size k that each
contain at least one representative from each ball. We employ the Birkhoff’s decomposition
(Birkhoff, 1946). This theorem applies over square matrices that are bistochastic. A matrix
is bistochastic if every entry is nonnegative and the sum of elements in each of its rows and
columns is equal to 1.

Theorem 2 (Birkhoff-von Neumann). Let Y be a n× n bistochastic matrix. There exists a
polynomial time algorithm that computes a decomposition Y =

∑L
ℓ=1 λℓY

ℓ, with L ≤ n2−n+2,
such that for each ℓ ∈ [L], λℓ ∈ [0, 1], Y ℓ is a permutation matrix and

∑L
ℓ=1 λℓ = 1.

We cannot directly apply the theorem above, since the (k/n)-fractional allocation X is
not bistochastic nor a square matrix. However, we can complete X into a square matrix

Y =
[

X
X ′

]
by adding n − k rows X ′ = [1/n](n−k)×n where all entries are 1/n. Note that

the resulting matrix Y is bistochastic. Indeed, each row of both X and X ′ sums to 1 by
their definition; further, as each column of X sums to k/n and that it is followed by n − k
of 1/n entries in X ′, the columns also sum to 1. Note that there are various choices of X ′

that makes Y a bistochastic matrix, but here we use the uniform matrix for simplicity. Then,
the algorithm applies Theorem 2 and computes the decomposition Y =

∑L
ℓ=1 λℓY

ℓ. For each
permutation matrix Y ℓ, we create a panel Pℓ consisting of the individuals that have been
assigned to the first k rows, i.e. Pℓ contains all i-s with Y ℓ

j,i = 1 for some j ≤ k. Finally, the
algorithm returns the distribution that selects each panel Pℓ with probability equal to λℓ.

To prove that FairGreedyCapturek is fair and ex post O(1)-q-core, we need the next
two lemmas.

10



Lemma 1. Let S ⊆ [n], P ′ be a panel, and m = ⌊|P ′|/q⌋.

1. There exists a partitioning of S into m disjoint sets T1, . . . , Tm and an individual i∗
ℓ ∈ Tℓ

such that for all ℓ ∈ [m] and i ∈ Tℓ, cq(i, P ′) ≤ cq(i∗
ℓ , P ′) and topq(i, P ′)∩ topq(i∗

ℓ , P ′) ̸=
∅.

2. There exists a partitioning of S into m disjoint sets T1, . . . , Tm and an individual i∗
ℓ ∈ Tℓ

such that for all ℓ ∈ [m] and i ∈ Tℓ, cq(i, P ′) ≥ cq(i∗
ℓ , P ′) and topq(i, P ′)∩ topq(i∗

ℓ , P ′) ̸=
∅.

Proof. We start by showing the first part. We partition all the individuals in S into m ≤
⌊|P ′|/q⌋ groups, denoted by T1, . . . , Tm iteratively as follows.

Suppose i∗
1 is the individual with the smallest q-cost over P ′ (ties are broken arbitrary),

i.e. i∗
1 = arg maxi∈S cq(i, P ′). Then, T1 is the set of all the individuals whose q closest repre-

sentatives from P ′ includes at least one member of topq(i∗
1, P ′), i.e.

T1 = {i ∈ S : topq(i, P ′) ∩ topq(i∗
1, P ′) ̸= ∅}.

Next, from the remaining individuals, suppose i∗
2 is the one with the smallest q-cost over P ′,

i.e. i∗
2 = arg mini∈S\T1 cq(i, P ). Construct T2 from S\T1 similarly by taking all the individuals

whose at least one of their q closest representatives in P ′ is included in topq(i∗
2, P ′). We repeat

this procedure, and in round ℓ, we find i∗
ℓ ∈ S \ (∪ℓ−1

ℓ′=1Tℓ′) that has the smallest cost over
P ′, and construct Tℓ by assigning any individual in S \ (∪ℓ−1

ℓ′=1Tℓ′) whose at least one of the
q closest representatives belongs in topq(i∗

ℓ , P ′). Note that for any ℓ1, ℓ2 ∈ [m] with ℓ1 < ℓ2,
topq(i∗

ℓ1
, P ′) ∩ topq(i∗

ℓ2
, P ′) = ∅, as if at least one of the q closest representatives of i∗

ℓ2
in P

is included in topq(i∗
ℓ1

, P ′), then i∗
ℓ2

would have been assigned to Tℓ1 and would not belong
in S \ (∪ℓ2−1

ℓ′=1 Tℓ′). This means that in each round, we consider q representatives that have
not been considered before, and hence after ⌊|P ′|/q⌋ rounds, less than q representatives in
P ′ may remain unconsidered. As a result, after at most ⌊|P ′|/q⌋ rounds, all the individuals
will have been assigned to some group, since at least one of their q closest representatives has
been considered.

The second part follows by simply setting i∗
ℓ to be equal to the individual in S \ (∪ℓ−1

ℓ′=1Tℓ′)
that has the largest cost over P ′, i.e. i∗

ℓ = arg mini∈S\(∪ℓ−1
ℓ′=1Tℓ′ ) cq(i, P ). All the remaining

arguments remain the same.

Lemma 2. For any panel P and any i, i′ ∈ [n], it holds that cq(i, P ) ≤ d(i, i′) + cq(i′, P ).

Proof. Consider a ball centered at i′ with radius cq(i′, P ). This ball contains at least q rep-
resentatives of P . Hence, cq(i, P ) is less than or equal to the distance of i to one of the q
representatives that are included in B(i′, cq(i′, P )) which is at most d(i, i′) + cq(i′, P ).

Now, we are ready to prove the next theorem.

Theorem 3. For every q, FairGreedyCapturek is fair and in the ex post 6-q-core.

Proof. Seeing that the algorithm is fair is straightforward. For a matrix A, let A[1 : k, :] be
the submatrix induced by keeping its first k rows. First, note that for each panel P ℓ we choose
the individuals that have been assigned to Y ℓ[1 : k, :] and second, recall that Y [1 : k, :] = X.
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The fairness of the algorithm follows by the facts that Y [1 : k, :] = X =
∑L

ℓ=1 λℓY
ℓ[1 : k, :]

and for each i ∈ [n],
∑k

j=1 Xj,i = k/n.
We proceed by showing that FairGreedyCapturek is in the ex post 6-q-core, for all

q ∈ [k]. First, note that if an individual i is assigned to a ball j in some Y ℓ, then we
must have Xj,i > 0. Now, since each individual i ∈ [n] is assigned to a ball j ∈ [k] in the
permutation, we get that that at least one individual is selected from each ball.

Let P be any panel that the algorithm may return. Suppose for contradiction that there
exists a panel P ′ such that Vq(P, P ′, 6) ≥ |P ′| · n/k. This means that there exists S ⊆ [n],
with |S| ≥ |P ′| · n/k, such that:

∀i ∈ S, cq(i, P ) > 6 · cq(i, P ′). (1)
Let T1, . . . , Tm be a partition of S with respect to P ′, as given in the first part of Lemma 1.

Since m ≤ ⌊|P ′|/q⌋ and |S| ≥ |P ′| · n/k, we conclude that there exists a part, say Tℓ, that
has size at least q · n/k. From Lemma 1, we know that there exists i∗

ℓ ∈ Tℓ such that for
each i ∈ Tℓ it holds that cq(i, P ′) ≤ cq(i∗

ℓ , P ′) and topq(i, P ′) ∩ topq(i∗
ℓ , P ′) ̸= ∅. Therefore,

we can conclude that for each i ∈ Tℓ, d(i∗
ℓ , i) ≤ 2 · cq(i∗

ℓ , P ′), as following: Pick an arbitrary
representative in topq(i, P ′) ∩ topq(i∗

ℓ , P ′) and denote it as ri. Then,

d(i, i∗
ℓ ) ≤ d(i, ri) + d(ri, i∗

ℓ ) ≤ cq(i, P ′) + cq(i∗
ℓ , P ′) ≤ 2 · cq(i∗

ℓ , P ′).
This implies that the ball centered at i∗

ℓ with a radius of 2 · cq(i∗
ℓ , P ′) captures all individuals

in Tℓ.
Now, consider all the balls that FairGreedyCapturek opens and contain individuals

from Tℓ. Since Tℓ ≥ q · n/k and each ball is assigned a total fraction of 1, there are at least
q such balls. Next, we claim that least q of them have radius at most 2 · cq(i∗

ℓ , P ′). Suppose
for contradiction that at most q − 1 of them have radius at most 2 · cq(i∗

ℓ , P ′). This means
that a total fraction of at least 1 from individual in Tℓ is assigned to balls with radius strictly
larger than 2 · cq(i∗

ℓ , P ′). However, the ball centered at i∗
ℓ with radius 2 · cq(i∗

ℓ , P ′) would have
captured this fraction, and therefore we reach a contradiction.

Next, denote with B1, . . . , Bq, q balls that are opened, and each contain individuals from
Tℓ and have radius at most 2 · cq(i∗

ℓ , P ′). Due to the definition of FairGreedyCapturek,
each panel that is returned, contains at least one representative from each ball. Therefore,
each ball Bj contains at least one representative, denoted by rj . Now, note that since each
Bj contains at least one individual from Tℓ, denoted by ij , we have that

∀j ∈ [q], d(i∗
ℓ , rj) ≤ d(i∗

ℓ , ij) + d(ij , rj) ≤ 6 · cq(i∗
ℓ , P ′),

where the first inequality follows from the triangle inequality and the last inequality follows
from the facts that for each i ∈ Tℓ, d(i∗

ℓ , i) ≤ 2 · cq(i∗
ℓ , P ′), and each Bj has radius at most

2·cq(i∗
ℓ , P ′) and both ij and rj belong to this ball. Therefore, there are at least q representatives

in P that have distance at most 6 · cq(i∗
ℓ , P ′) from i∗

ℓ . But then, cq(i∗
ℓ , P ) ≤ 6 · cq(i∗

ℓ , P ′) which
is a contradiction with Equation (1).

As we discussed above, the ex post α-q-core implies the ex ante α-q-core which means that
FairGreedyCapturek is also in the ex ante 6-q-core for all q ∈ [k]. In the next section, we
show that no fair algorithm provides an approximation better than 2 to the ex ante q-cost,
for any q. Therefore, we get that no fair selection algorithm provides an approximation better
than 2 to the ex post q-core either. This means that FairGreedyCapturek is optimal up
to a factor of 3.
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3.1. Ex Post Core and Quotas over Features
In our introduction, we discussed a common approach used to ensure proportional represen-
tation, which involves setting quotas based on individual or groups of features. For instance,
a quota might mandate that at least 45% of representatives are female. While the concept of
the core aims to achieve proportional representation across intersecting features, it may not
guarantee the same across individual features. For instance, a panel comprising entirely men
could still meet core criteria, even if the overall population is 50% women. This raises the
question of whether it’s possible to achieve both types of representation to the degree that is
possible. We argue that this is feasible and show how the core requirement can be translated
into a set of quotas.

As showed above, FairGreedyCapturek generates k balls, with each individual assigned
to one or more balls. The key condition for achieving an ex post O(1)-q-core is to have at
least one representative from each ball. This condition can be transformed into quotas by
introducing an additional feature, bi, for each individual i, indicating the balls they belong to.
Thus, bi can take values in 2[k] \ {∅}, where 2[k] represents the power set of [k]. We then can
set quotas that require the panel to contain at least one representative i that belongs in ball
j, i.e. j ⊆ bi, for each j ∈ [k]. In other words, we can think of each ball as a subpopulation
from which we want to draw a representative. We can then utilize the methods proposed
by Flanigan et al. (2021a) to identify panels that meet these quotas, along with others as
much as possible, while maximizing fairness. We also note that this translation allows for
sampling from a biased pool of representatives using the algorithm of the aforementioned
paper, as long as the characteristics of the global population are known and the balls can be
constructed based on them.

4. Uniform Selection and Ex Ante Core
We have already discussed that uniform selection fails to provide any reasonable approxi-
mation to the ex post q-core, for almost all values of q. However, as we mentioned in the
introduction, it seems to satisfy the ex ante q-core, at least when k is very large. In this
section, we ask whether indeed uniform selection satisfies a constant approximation of the ex
ante q-core, in a rigorous way, for all values of q and k. We show that uniform selection is in
the ex ante 4-q-core, for every q. 2

To show this result, we use the following form of Chu–Vandermonde identity which we
prove in Appendix D for completeness.

Lemma 3 (Chu–Vandermonde identity). For any n, k, and r, with 0 ≤ r ≤ k ≤ n, it holds

n∑
j=0

(
j

r

)
·
(

n− j

k − r

)
=
(

n + 1
k + 1

)
.

Now, we are ready to prove the following theorem.

2In fact, for q = k, uniform selection is in the ex ante k-core (see Appendix C). The main reason is that, for
q = k, it suffices to show that the grand coalition does not deviate ex-ante. Since each panel is selected
with non-zero probability, the marginal probabilities of deviation is strictly less than one, and the ex ante
k-core is satisfied.
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4 · cq(iℓ
j , P ′)
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j
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iℓ
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iℓ
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3

iℓ
4

. . .

Figure 1: Diagram for Proof of Lemma 4

Theorem 4. For any q, uniform selection is in the ex ante 4-q-core, i.e. for any panel P ′

EP ∼Uk

[
Vq(P, P ′, 4)

]
< |P ′| · n

k
.

Proof. Let P ′ be any panel. By linearity of expectation, we have that

EP ∼Uk

[
Vq(P, P ′, 4)

]
=
∑
i∈[n]

PrP ∼Uk

[
cq(i, P ) > 4 · cq(i, P ′)

]
.

Let T1 . . . , Tm be a partition of [n] with respect to P ′, as given in the second part of Lemma 1.
For each ℓ ∈ [m], we reorder the individuals in Tℓ in an increasing order based on their distance
from i∗

ℓ , and relabel them as iℓ
1, . . . , iℓ

|Tℓ|. This way, iℓ
1 and iℓ

|Tℓ| are the individuals in Tℓ that
have the smallest and the largest distance from i∗

ℓ , respectively. Then, we get that

∑
i∈[n]

PrP ∼Uk

[
cq(i, P ) > 4 · cq(i, P ′)

]
=

m∑
ℓ=1

|Tℓ|∑
j=1

PrP ∼Uk

[
cq(iℓ

j , P ) > 4 · cq(iℓ
j , P ′)

]
. (2)

In the next lemma, we bound PrP ∼Uk

[
cq(iℓ

j , P ) > 4 · cq(iℓ
j , P ′)

]
for each iℓ

j .

Lemma 4. For each ℓ ∈ [m] and j ∈ [|Tℓ|],

PrP ∼Uk

[
cq(iℓ

j , P ) > 4 · cq(iℓ
j , P ′)

]
≤

q−1∑
r=0

1(n
k

) · (j

r

)(
n− j

k − r

)
.

Proof. For each iℓ
j , let rℓ

j be an arbitrary representative in topq(iℓ
j , P ′) ∩ topq(i∗

ℓ , P ′). Then,
we get that

d(iℓ
j , i∗

ℓ ) ≤ d(iℓ
j , rℓ

j) + d(rℓ
j , i∗

ℓ ) ≤ cq(iℓ
j , P ′) + cq(i∗

ℓ , P ′) ≤ 2 · cq(iℓ
j , P ′), (3)

where the last inequality follows from the fact that i∗
ℓ has the smallest cost over P ′ among all

the individuals in Tℓ. Now, consider the ball that is centered at iℓ
j and has radius 4 ·cq(iℓ

j , P ′).
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Note that this ball contains any individual iℓ
j′ with j′ < j. Indeed, for each iℓ

j and iℓ
j′ with

j′ < j, we have that

d(iℓ
j , iℓ

j′) ≤ d(iℓ
j , i∗

ℓ ) + d(i∗
ℓ , iℓ

j′) ≤ 2 · d(iℓ
j , i∗

ℓ ) ≤ 4 · cq(iℓ
j , P ′),

where the second inequality follows form the fact that for each j′, j ∈ [|Tℓ|] with j′ < j,
d(iℓ

j′ , i∗
ℓ ) ≤ d(iℓ

j , i∗
ℓ ) and the last inequality follows form Equation (3). This argument is

drawn in Figure 1.
When cq(iℓ

j , P ) > 4 · cq(iℓ
j , P ′), then we get that |P ∩ {iℓ

1, . . . , iℓ
j}| < q, as otherwise there

would exist at least q individuals in B(iℓ
j , 4 · cq(iℓ

j , P ′)), and cq(iℓ
j , P ) would be at most

4 · cq(iℓ
j , P ′). Hence, we have that

Pr
P ∼Uk

[cq(iℓ
j , P ) > 4 · cq(iℓ

j , P ′)] ≤ Pr
P ∼Uk

[
|P ∩ {iℓ

1, . . . , iℓ
j}| < q

]
= Pr

P ∼Uk

q−1⋃
r=0
|P ∩ {iℓ

1, . . . , iℓ
j}| = r


≤

q−1∑
r=0

Pr
P ∼Uk

[
|P ∩ {iℓ

1, . . . , iℓ
j}| = r

]
=

q−1∑
r=0

1(n
k

) · (j

r

)(
n− j

k − r

)
.

where the second inequality follows from the Union Bound and the last equality follows form
the fact that uniform selection chooses k out of n individuals uniformly at random.

Then, by returning to Equation (2) we get that,

EP ∼Uk
[Vq(P, P ′, 4)] =

m∑
ℓ=1

|Tℓ|∑
j=1

PrP ∼Uk

[
cq(iℓ

j , P ) > 4 · cq(ij , P ′)
]

≤ 1(n
k

) · m∑
ℓ=1

|Tℓ|∑
j=1

q−1∑
r=0

(
j

r

)(
n− j

k − r

)
(by Lemma 4)

= 1(n
k

) · m∑
ℓ=1

q−1∑
r=0

|Tℓ|∑
j=1

(
j

r

)(
n− j

k − r

)
(swap summations)

≤ 1(n
k

) · m∑
ℓ=1

q−1∑
r=0

n∑
j=0

(
j

r

)(
n− j

k − r

)
(|Tℓ| ≤ n)

= 1(n
k

) · m∑
ℓ=1

q−1∑
r=0

(
n + 1
k + 1

)
(by Lemma 3)

=
m∑

ℓ=1

q−1∑
r=0

n + 1
k + 1 = m · q · n + 1

k + 1 < |P ′| · n

k
,

where the last inequality follows from the facts that m ≤
⌊

|P ′|
q

⌋
and n+1

k+1 < n
k for k < n.

In the next theorem, we show that for any q < k, no selection algorithm that is fair, is
guaranteed to achieve ex ante α-q-core with α < 2, and hence uniform selection is optimal
up to a factor of 2.
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ALGORITHM 2: Auditing Algorithm
Input: P , [n], d, k, q,
Output: α̂
for j ∈ [n] do

P̂j ← {j} ∪ q − 1 closest neighbors of j;
α̂j ← the ⌈q · n/k⌉ largest value among {cq(i, P )/cq(i, P̂j)}i∈[n];

end
return α̂← arg maxj∈[n] α̂j

Theorem 5. For any q ∈ [k − 1], when n ≥ 2k2/(k − q), there exists an instance such that
no selection algorithm that is fair, is in the ex ante α-q-core with α < 2.

Proof. Consider a star graph with n − q leaves and an internal node. Suppose q individuals
I = {i1, . . . , iq} lie on the internal node, and exactly one individual lies on each of the n− q
leaves. Individuals in I have a distance of 0 from each other and a distance of 1 from [n] \ I;
and, the distance between a pair of individuals from [n] \ I is equal to 2. These distances
satisfy the triangle inequality.

Let P be an arbitrary panel of size k that does not contain i1. We show that for P ′ = I
and every α < 2, we have that Vq(P, P ′, α) ≥ n− k. For any i ∈ I, it holds cq(i, P ) = 1 and
cq(i, P ′) = 0 — which is an unbounded improvement. For any individual i in [n] \ (I ∪ P ),
cq(i, P ) = 2 since their qth closest representative in P would be on another leaf, while
cq(i, P ′) = 1 — which yields a 2 factor improvement. Therefore, Vq(P, P ′, α) ≥ |([n] \ (I ∪
P )) ∪ I| ≥ n− |P | = n− k, for every α < 2.

Under any fair selection algorithm, i1 is not included in the panel with probability 1− k/n.
Thus, we have that

EP ∼Uk
[Vq(P, P ′, α)] ≥ Pr

P ∼Uk

[i1 /∈ P ] · (n− k) = (1− k/n) · (n− k) ≥ q · n/k = |P ′| · n/k,

where the last inequality follows from the assumption that n ≥ 2k2/(k − q).

5. Auditing Ex Post Core
In this section, we turn our attention to the following question: Given a panel P , how much
does it violate the q-core, i.e. what is the maximum value of α such that there exists a panel
P ′ with Vq(P, P ′, α) ≥ |P ′| · n/k? This auditing question can be very useful in practice for
measuring the proportional representation of a panel formed using a method that does not
guarantee any panel to be in the approximate core, such as uniform selection.

Chen et al. (2019) ask the same question for the case where the cost of an individual
for a panel is equal to her distance form her closest representative in the panel, i.e. when
q = 1. In this case, it suffices to restrict our attention to panels of size 1, which are subsets
of the population that individuals may prefer to be represented by. In other words, given a
panel P , we can simply consider every individual as a potential representative and check if
a sufficiently large subset of the population prefers this individual to be their representative
over P . Thus, we can find the maximum α such that there exists P ′, with Vq(P, P ′, α) ≥ n/k
as following: For each j ∈ [n], calculate αj which is equal to the ⌈n/k⌉ largest value among
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the set {cq(i, P )/cq(i, {j})}i∈[n] containing the q-cost ratios of P to P̂ . Then, α is equal to
the maximum value among all αj ’s.

For q > 1, this question is more challenging. We show the possibility of approximating
the value of the maximum α, by generalizing the above procedure as following: For each
j ∈ [n], let P̂j be the panel that contains j and its q − 1 closest neighbors. Then, calculate
α̂j as the ⌈q · n/k⌉ largest value of among the set {cq(i, P )/cq(i, P̂j)}i∈[n]. Then, we return
the maximum value among all α̂j ’s as α̂. Algorithm 2 executes this procedure. We show that
the maximum α such that there exists a panel P ′ with Vq(P, P ′, α) ≥ |P ′| · n/k is at most
3 · α̂ + 2.

Theorem 6. There exists an efficient algorithm that for every panel P and q ∈ [k] returns
α̂-q-core violation that satisfies α̂ ≤ α ≤ 3α̂ + 2, where α is the maximum amount of q-core
violation of P .

Proof. Suppose for contradiction that while the algorithm returns α̂, there exists S ⊆ [n] and
P ′ ⊆ [n], with |S| ≥ |P ′| · n/k, such that

∀i ∈ S, cq(i, P ) > (3 · α̂ + 2) · cq(i, P ′).

First, note that if the algorithm outputs α̂, this means that for every α′ > α̂ and j ∈ [n],
it holds that

Vq(P, P̂j , α′) < |P̂j | · n/k, (4)

as otherwise the algorithm would output a value strictly larger than α̂.
Let T1, . . . , Tm be a partition of S with respect to P ′, as given in the first part of Lemma 1.

Since m ≤ ⌊|P ′|/q⌋ and |S| ≥ |P ′| ·n/k, we conclude that there exists a part, say Tℓ, that has
size at least q · n/k. Moreover, since there exists i∗

ℓ ∈ Tℓ such that for each i ∈ Tℓ, it holds
that cq(i, P ′) ≤ cq(i∗

ℓ , P ′) and topq(i, P ′)∩ topq(i∗
ℓ , P ′) ̸= ∅, we can conclude that d(i, i∗

ℓ ) ≤ 2 ·
cq(i∗

ℓ , P ′), by considering a representative in topq(i, P ′)∩topq(i∗
ℓ , P ′) and applying the triangle

inequality, i.e. d(i, i∗
ℓ ) ≤ d(i, ri) + d(ri, i∗

ℓ ) ≤ 2 · cq(i∗
ℓ , P ′), where ri ∈ topq(i, P ′)∩ topq(i∗

ℓ , P ′).
This means there exists a ball centered at i∗

ℓ that has radius 2 · cq(i∗
ℓ , P ′) and captures all the

individuals in Tℓ. Now, note that there exists i′ ∈ Tℓ such that α′ · cq(i′, P̂i∗
ℓ
) > cq(i′, P ), since

otherwise for each i ∈ Tℓ would hold that α′ · cq(i′, P̂i∗
ℓ
) ≤ cq(i′, P ) and then Vq(P, P̂i∗

ℓ
, α′) ≥

q · n/k = |P̂i∗
ℓ
| · n/k which contradicts Equation (4). Hence,

cq(i∗
ℓ , P ) ≤ d(i∗

ℓ , i′) + cq(i′, P ) < d(i∗
ℓ , i′) + α′ · cq(i′, P̂i∗

ℓ
) ≤ d(i∗

ℓ , i′) + α′ · (d(i∗
ℓ , i′) + cq(i∗

ℓ , P̂i∗
ℓ
)

≤ (3 · α′ + 2) · cq(i∗
ℓ , P ′).

where the first and the third inequalities follows from Lemma 2 and the last inequality follows
from the facts that for each i ∈ Tℓ, d(i, i∗

ℓ ) ≤ 2 · cq(i∗
ℓ , P ′), and cq(i∗

ℓ , P̂i∗
ℓ
) ≤ cq(i∗

ℓ , P ′) for each
P ′ since P̂i∗

ℓ
consists of the q closest neighbors of i∗

ℓ . Therefore, cq(i∗
ℓ , P ) ≤ (3 ·α̂+2) ·cq(i∗

ℓ , P ′)
and the theorem follows.

6. Experiments
In previous sections, we examined uniform selection from a worst-case perspective and found
that it cannot guarantee panels in the core for any bounded approximation ratio. But, what

17



about the average case? How much better is FairGreedyCapture than uniform selection
in terms of their approximations to the ex post core in the average case? In this section, we
aim to address these questions through empirical evaluations of both algorithms using real
databases.

6.1. Datasets
In accordance with the methodology proposed by Ebadian et al. (2022), we utilize the same
two datasets used by the authors as a proxy for constructing the underlying metric space.
These datasets capture various characteristics of populations across multiple observable fea-
tures. It is reasonable to assume that individuals feel closer to others who share similar
characteristics. Therefore, we construct a random metric space using these datasets.

Adult. The first is the Adult dataset, extracted from the 1994 Current Population Survey
by the US Census Bureau and available on the UCI Machine Learning Repository under a
CC BY 4.0 license (Kohavi and Becker, 1996; Dua and Graff, 2017). Our analysis focuses
on five demographic features: sex, race, workclass, marital.status, and education.num.
The dataset comprises 32,561 data points, each with a sample weight attribute (fnlwgt). We
identify 1513 unique data points by these features and treat the sum of the weights associated
with each unique point as a distribution across them.

ESS. The second dataset we analyze is the European Social Survey (ESS), available under
a CC BY 4.0 license (Report., 2021). Conducted biennially in Europe since 2001, the survey
covers attitudes towards politics and society, social values, and well-being. We used the ESS
Round 9 (2018) dataset, which has 46,276 data points and 1451 features across 28 countries.
On average, each country has around 250 features (after removing non-demographic and
country-unrelated data), with country-specific data points ranging from 781 to 2745. Each
ESS data point has a post-stratification weight (pspwght), which we use to represent the
distribution of the data points. Our analysis focuses on the ESS data for the United Kingdom
(ESS-UK), which includes 2204 data points.

6.2. Representation Metric Construction
In line with the work of Ebadian et al. (2022), we apply the same approach to generate
synthetic metric preferences, which are used to measure the dissimilarity between individuals
based on their feature values. Our datasets consist of two types of features: categorical features
(e.g. sex, race, and martial status) and continuous features (e.g. income). We define the
distance between individuals i and j with respect to feature f as follows:

d(i, j; f) :=

1[f(i) ̸= f(j)], if f is a categorical feature;
1

maxi′,j′ |f(i′)−f(j′)| · |f(i)− f(j)|, if f is a continuous feature,

where the normalization factor for continuous features ensures that d(i, j; f) ∈ [0, 1] for all
i, j, and f , and that the distances in different features are comparable. Next, we define the
distance between two individuals as the weighted sum of the distances over different features,
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Figure 2: Ex post core violation of FairGreedyCapture and Uniform with k = 40

i.e. d(i, j) =
∑

f∈F
wf · d(i, j; f), where the weights wf ’s are randomly generated. Each

unique set of randomly generated feature weights results in a new representation metric.
We generate 100 sets of randomly-assigned feature weights per dataset, calculate a represen-

tation metric for each set, and report the performance metrics averaged over 100 instances.
Given that our datasets are samples of a large population (i.e. millions) and represented
through a relatively small number of unique data points (i.e. few thousands), we assume that
each data point represents a group of at least k people, which takes a maximum value of 40
in our study. To empirically measure ex post core violation, for each of the 100 instances,
we sample one panel from an algorithm and compute the core violation using Algorithm 2.
We note that this is not exactly equal to the worst-case core violation, but a very good
approximation of it.

6.3. Results
Results for Ex Post Core Violation. In Adult dataset, we observe an unbounded ex post
core violation for Uniform when q ≤ 4. Specifically, for q ∈ {1, 2, 3}, we observed unbounded
core violation in 84%, 9%, and 36% of the instances respectively. This happens since ∼8.3% of
the population is mapped to a single data point and that Uniform fails to select q individuals
from this group. When q ≤ 3, we have q/k ≤ 8.4%, and this cohesive group is entitled to select
at least q members of the panel from themselves, which results in q-cost of 0 for them and
an unbounded violation of the core. However, FairGreedyCapture captures this cohesive
group and selects at least q representatives from them. Furthermore, we see significantly
higher ex post core violation for Uniform compared to FairGreedyCapture for smaller
values of q (up to 12) and comparable performance for larger values of q. This is expected as
FairGreedyCapture tends to behave more similarly to Uniform as q increases because
it selects from fewer yet larger groups (⌊k/q⌋+ 1 groups of size qn/k).

We observe a similar pattern in ESS-UK that Uniform obtains worse ex post core viola-
tions when q is smaller and similar performance as FairGreedyCapture for larger values
of q. However, in contrast to Adult, we do not observe similar unbounded violations for Uni-
form in ESS-UK. The reason is that ESS-UK consists of 250 features (compared to the 5
we used from Adult) and any data points represent at most 0.2% of the population. Thus,
no group is entitled to choose enough representatives from their own to significantly improve
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Figure 3: Approximation to the optimal social cost of FairGreedyCapture and Uniform
with with k = 40

their cost or make it 0. The decline in core violation for q = k happens as it measures the
minimum improvement in cost over the whole population, which is more demanding than
lower values of q. Lastly, FairGreedyCapture performs consistently for all values of q and
achieves an ex post core violation less than 1.6 and 1.25 in Adult and ESS-UK respectively.

Evaluating Approximation to Optimal Social Cost. As we mentioned in the introduction,
Ebadian et al. (2022) use a different approach to measure the representativeness of a panel
by considering the social cost (sum of q-costs) over a panel. In particular, they define the
representativeness of an algorithm as the worst-case ratio between the optimal social cost and
the (expected) social cost obtained by the algorithm. Ebadian et al. (2022), in their empirical
analysis, measure the average approximation to the optimal social cost of an algorithm A
over a set of instances I, defined as 1

|I|
∑

I∈I
minP

∑
i∈[n] cq(i,P )∑

i∈[n] cq(i,A(I)) . Since finding the optimal

panel is a hard problem and the dataset and panel sizes are large, Ebadian et al. (2022) use a
proxy for the minimum social cost, specifically, an implementation of the algorithm of Kumar
and Raichel (2013) for the fault-tolerant k-median problem that achieves a constant factor
approximation of the optimal objective — which is equivalent to minimizing the q-social cost.
We use the same approach and report the average approximation to the optimal social cost
of FairGreedyCapture and Uniform.

In Figure 3, the reader can see the performance of the two different algorithms over
this objective. For ESS-UK, we observe a similar behaviour from the two algorithms, while
for Adult, FairGreedyCapture outperforms Uniform for q ∈ [3], which is again due
to FairGreedyCapture capturing the cohesive group. All considered, we observe that
FairGreedyCapture can maintain at least the same level or even better optimal social
cost approximation as Uniform would, while achieving significantly better empirical core
guarantees in the two datasets.

7. Discussion
This work introduces a notion of proportional representation, called the core, within the
context of sortition. The core serves as a metric to ensure proportional representation across
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intersectional features. While uniform selection achieves an ex ante O(1)-q-core, it fails to
provide a reasonable approximation to the ex post q-core. To address this, we propose a
selection algorithm, FairGreedyCapture, which preserves the positive aspects of uniform
selection, i.e. fairness and ex ante O(1)-q-core, while also meeting the ex post O(1)-q-core
requirement. We also highlight that the use of FairGreedyCapture allows the translation
of the core requirement into a set of quotas, which can be integrated with another set of quotas
to ensure proportional representation across both individual and intersectional features.

It is worth to emphasize that the limitations of uniform selection in satisfying ex post
guarantees arise from the potential return of non-proportionally representative panels with a
positive probability. In Appendix E, we explore a natural variation where the core property is
mandated to hold over the expected q-costs of panels chosen from a selection algorithm. We
demonstrate that this variation is incomparable with the ex post q-core, and more importantly
uniform selection fails to offer any meaningful multiplicative approximation to this variation,
as well.

There are many directions for future work. First, there are gaps between the lower and
upper bounds we provide for both the ex ante and the ex post core. Closing these gaps and
investigating if there are fair selection algorithms that provide better guarantees to ex ante
and/or ex post core is an immediate interesting direction. Moreover, we show Fair Greedy
Capture is in the ex post 6-q-core, but we do not provide lower bounds indicating that this
analysis is tight. In fact, in Appendix F, we show that for q = 1, FairGreedyCapture
is in the ex post ((3 +

√
17)/2 ≊ 3.57)-1-core and this is tight. Finding tight bounds for

the general case is an open question. In addition, in Appendix G, we show that if q is
known for an application at hand and we wish to provide guarantees with respect to ex
post q-core, a variation of Augmented-FairGreedyCapture provides an approximation
of ((5 +

√
41)/2) ≈ 5.72, which is slightly better than the approximation of 6. Exploring if

this is tight as well is another interesting direction. Furthermore, Micha and Shah (2020)
show that for q = 1, Greedy Capture (Chen et al., 2019), provides better guarantees for the
Euclidean space. So, another interesting question is to see if when the metric d consists of
usual distance functions such as norms L2, L1 and L∞, FairGreedyCapture can provide
better guarantees.
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A. Minimizing Social Cost Fails to Provide Proportional
Representation

Example 7. Let n be odd, k = 3 and q = 1. Assume that there are four group of individuals,
A, B, C and D. There are exactly one individual in group A, and exactly one individual in
group B, while there are n−1

2 individuals in group C and n−1
2 individuals in group D. The

distances between individuals in different groups is specified in the following table.

A B C D
A 0 ∞ ∞ ∞
B ∞ 0 ∞ ∞
C ∞ ∞ 0 10
D ∞ ∞ 10 0

It is not difficult to see that any panel with minimum social cost contains the single individuals
in groups A and B and one individual from either group C or group D, as otherwise the social
cost would be unbounded. This means that while the individuals in group C form almost 50% of
the population, and similarly do the individuals in group D, in any panel with optimal social
cost, either group C or D is not represented at all. On the other hand, the two eccentric
individuals are always part of the panel.

B. Uniform Selection is in the Ex Post 2-k-Core
Next, we show that when q = k, any panel is in the ex post 2-k-core, which implies that any
algorithm including uniform selection is in the ex post 2-k-core. This is due to the fact that
in this case only if the grand coalition, i.e. all the agents, has incentives to deviate, the ex
post core is violated.

Theorem 8. Every panel is in the ex post 2-k-core. Therefore, uniform selection is in the ex
post 2-core, and this is tight.

Proof. Consider any panel P . It suffices to show that for any arbitrary panel P ′ of size k, the
q-cost of all individuals cannot be improved by a factor of greater than α = 2.

Let i1 and i2 be the two individuals in the population with the maximum distance between
them. Now, consider an arbitrary representative r in panel P ′. Without loss of generality,
suppose that ck(i1, P ′) ≤ ck(i2, P ′). Then, we have

ck(i2, P ) = max
j∈P

d(i2, j) ≤ d(i1, i2) (by the choice of i1 and i2)

≤ d(i1, r) + d(r, i2) (triangle inequality)
≤ ck(i1, P ′) + ck(i2, P ′) (as r ∈ P ′)
≤ 2 · ck(i2, P ′).

This implies Vq(P, P ′, 2) < |P ′| ·n/k = n, since the q-cost for i2 does not improve by a factor
of more than two. From, this we get that any panel P is in the ex post 2-k-core, and therefore
uniform selection is in the ex post 2-core.
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Next, we show that there exists an instance such that uniform selection is not in the ex
post α-k-core for α < 2. Consider the case that the individuals are assigned into three groups,
A, B and C, with ⌊k/2⌋, ⌈k/2⌉, and n − k individuals, respectively. The distances between
individuals is as specified in the following table.

A B C

A 0 2 1
B 2 0 1
C 1 1 0

The panel P which consists of all the k people in groups A and B is in the support of uniform
selection. Then, for i ∈ A ∪B, ck(i, P ) = 2 as the k-th closest representative in P lies in the
other group. For i ∈ C, the ck(i, P ) = 1. Now, consider panel P ′ that consists of k individuals
from group C. The q-costs of all individuals improve by a factor of at least 2. Hence, Uk

violates ex post 2-k-core in this example.

C. Uniform Selection is in the Ex Ante k-Core
Proposition 9. Uniform selection is in the ex ante k-core.

Proof. To satisfy ex ante k-core, for any panel |P ′| of size k, we should have

EP ∼Dk
[Vq(P, P ′, α)] < |P ′| · n

k
= n.

Essentially, this means that the ex ante k-core is violated only if the grand coalition, i.e. all
the agents, has incentives to deviate to P ′, in expectation. Since Vq(P, P ′, α) ≤ n for all P ′

by definition, it suffices to show that there exists a panel P that is chosen with non-zero
probability, and it holds that Vq(P, P ′, α) < n. Since, Uk chooses any panel with non-zero
probability, including P ′, there is a non-zero probability that we realize panel P = P ′ for
which Vq(P, P ′, α) = 0 — since the q-costs do not strictly improve for any individual. Thus,
the expected preference count of the panel that selected from uniform selection with respect
to any other panel is strictly less than n, satisfying the ex ante k-core.

D. Proof of Chu–Vandermonde Identity
Proof. We give a combinatorial argument for this identity. Suppose we want to select k + 1
items out of a set of size n + 1. For i ∈ [1, n + 1], let Pi be the number of such subsets in
which the (r + 1)th picked item is item i. As each subset is counted exactly once among
Pi’s (at the position of its (r + 1)th item), we have

∑n+1
i=1 Pi =

(n+1
k+1
)
. Now, we calculate Pi.

Suppose the (r + 1)th item is i. Then, r items should be selected from the first i − 1 items
and k + 1− (r + 1) = k− r items should be selected from the last n + 1− i items. Therefore,
Pi =

(i−1
r

)
·
(n−(i−1)

k−r

)
. Then, we have(

n + 1
k + 1

)
=

n+1∑
i=1

Pi =
n+1∑
i=1

(
i− 1

r

)
·
(

n− (i− 1)
k − r

)
=

n∑
j=0

(
j

r

)
·
(

n− j

k − r

)
.

25



E. q-Core over Expected Cost
A variation of the demanding ex post q-core is to ask the core property to hold with respect
to the expected q-cost, as it is given in the definition below.

Definition 10 (α-q-Core over Expected Cost). A selection algorithm Ak is in the α-q-core
over expected cost (or in the q-core over expected cost, for α = 1) if there is no S ⊆ [n] and
a panel P ′ with |P ′| ≤ |S|/n · k such that

∀i ∈ S, EP ∼Ak
[cq(i, P )] > α · cq(i, P ′).

We start by showing that the ex post q-core and the q-core over expected cost are incom-
parable.

Proposition 11. For any q ∈ [k], ex post q-core and q-core over expected cost are incompa-
rable.

Proof. First, we show that the ex post q-core does not imply the q-core over expected cost.
Assume that n is divisible by k and q is divisible by 3. Consider an instance where there are
five groups of individuals, A, B, C, D and E. The first three groups contain (q · n/k − q)/3
individuals each, the fourth group contains q individuals and the last group contains n−q ·n/k
individuals. The table below provides the specified distances between individuals within given
groups.

A B C D E

A 0 2 2 1 ∞
B 2 0 2 1 ∞
C 2 2 0 1 ∞
D 1 1 1 0 ∞
E ∞ ∞ ∞ ∞ 0

Suppose that a selection algorithm Ak returns with probability 1/3 a panel that contains q
individuals from group A and the remaining representatives are from group E, with probabil-
ity 1/3 a panel that contains q individuals from group B and the remaining representatives
are from group E and with probability 1/3 a panel that contains q individuals from group
C and the remaining representatives are from group E. All these panels are in the ex post
q-core, since there is no sufficiently large group such that if they choose another panel, all of
them reduce their distance. Now, we see that for each i in A or B or C, it holds that

EP ∼Ak
[cq(i, P )] = 2

3 · 2 = 4/3

while for each i in D, it holds that

EP ∼Ak
[cq(i, P )] = 1.

If all the individuals in A, B, C and D choose a panel P ′ that contains q individuals from
D, then all of them reduce their distance by a factor at least equal to 4/3.

Next, we show that the q-core over expected cost does not imply the ex post q-core. Consider
an instance where there are four groups of individuals, A, B, C, D. Group A contains q·n/k−q
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A B C D

A 0 1 2 ∞
B 1 0 1 ∞
C 2 1 0 ∞
D ∞ ∞ ∞ 0

individuals, group B contains q individuals, group C contains q individuals and group D
contains all the remaining individuals. The distance between individuals belonging to given
groups is specified in the following table.
Suppose that a selection algorithm Ak returns with probability 1/2 a panel P1 that contains
q individuals from group A and k − q individuals from group D, and with the remaining
probability returns a panel P2 that contains q individuals from group C and k−q individuals
from group D. Then, for each i in A ∪ C, we have that

EP ∼Ak
[cq(i, P )] = 1

2 · 2 = 1

while for each i in B, we have that

EP ∼Ak
[cq(i, P )] = 1

2 · 1 + 1
2 · 1 = 1.

Hence, this algorithm is in the q-core over expected cost. But when the algorithm returns
P1, all the individuals in A and B can reduce their cost by a factor of 2 by choosing q
representatives in B.

Next, we show that as in the case of the ex post q-core, uniform selection is in the 2-k-core
over expected cost.

Theorem 12. For q = k, uniform selection is 2-q-core over expected cost.

Proof. In the proof of Theorem 8, we show that for any P and any panel P ′, with |P | = |P ′| =
k, there exists i ∈ N , such that ck(i, P ) ≤ 2 · ck(i, P ′). This implies that EP ∼Uk

[ck(i, P )] ≤
2 · ck(i, P ′), which means that uniform selection is in the 2-k-core over expected cost. This
is because to violate 2-k-core over expected cost, the k-cost of the entire population would
have to improve by a factor of more than 2, which does not hold for individual i.

Again as in the case of the ex post q-core, we show that uniform selection does not provide
any bounded multiplicative approximation to the q-core over expected cost, for q ∈ [k − 1].

Theorem 13. For any q ∈ [k− 1] and ⌊n/k⌋ ≥ k, there exists an instance such that uniform
selection is not in the α-q-core over expected cost, for any bounded α.

Proof. Consider the instance as given in proof Theorem 1. As before, uniform selection may
return a panel that consists only from individuals in group A. Therefore, all the individuals
in group B have positive expected q-cost under uniform selection, while if they choose a panel
among themselves, they would all have a q-cost of 0. Thus, uniform selection is not in the
α-q-core over expected cost for any bounded α.
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Lastly, we show that FairGreedyCapturek is in the 6-q-core over expected cost, for
every q.

Theorem 14. For every q, FairGreedyCapturek is in the 6-q-core over expected cost.

Proof. Let Dk be the distribution that FairGreedyCapturek returns. Suppose for contra-
diction that there exists S ⊆ [n] and P ′ ⊆ [n], with |S| ≥ |P ′| · n/k, such that

∀i ∈ S, EP ∼Dk,q
[cq(i, P )] > 6 · cq(i, P ′).

In the proof of Theorem 3, we show that there exist i∗
ℓ ∈ S such that for every P in

the support of the algorithm, we have that cq(i∗
ℓ , P ) ≤ 6 · cq(i∗

ℓ , P ′). This implies that
EP ∼Dk

cq(i∗
ℓ , P ) ≤ 6 · cq(i∗

ℓ , P ′) which is a contradiction.

F. Analysis of FairGreedyCapturek for the Ex Post 1-Core

Theorem 15. FairGreedyCapturek in the ex post 3+
√

17
2 -1-core and there exists an in-

stance for which this bound is tight.

Proof. Let P be any panel that the algorithm may return. Suppose for contradiction that
there exists a panel P ′ such that Vq(P, P ′, (3 +

√
17)/2) ≥ |P ′| · n/k. This means that there

exists S ⊆ [n], with |S| ≥ |P ′| · n/k, such that:

∀i ∈ S, cq(i, P ) > (3 +
√

17)/2 · cq(i, P ′). (5)

If |P ′| > 1, we can partition S into |P ′| groups by assigning each individual to their clos-
est representative from P ′, and at least one of these groups should have size at least n/k.
Therefore, without loss of generality, we can assume that |P ′| = 1 and |S| ≥ n/k.

Let P ′ = {i∗} and i′ be the individual in S that has the largest distance from i∗. Since
there are sufficiently many individuals in the ball B(i∗, d(i∗, i′)), it is possible that the algo-
rithm opened it during its execution. If this happened, this means that there is at least one
representative in P that is located within this ball. Then, we get that i′ has a distance at
most equal to the diameter of the ball from her closest representative in P which is at most
2 ·d(i′, i∗) = 2 ·cq(i′, P ′). Hence, i′ cannot reduce her distance by a multiplicative factor larger
than 2 by choosing P ′, and we reach in a contradiction.

On the other hand, if the algorithm did not open this ball during its execution, this means
that some of the individuals in T have been allocated to different balls before the ball centered
at i∗ captures sufficiently many of them. Hence, some individuals in S have been captured
from a different ball with radius at most d(i′, i∗) = cq(i′, P ′). Suppose that i′′ is the first
individual in S that was captured from such a ball. Then, we have that within this ball there
is 1 representative in P . Hence cq(i′′, P ) ≤ 2 · d(i′, i∗), since the distance of i′′ form any other
individual in this ball is at most equal to the diameter of the ball. We consider the minimum
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multiplicative improvement of both i′ and i′′:

min
(

cq(i′, P )
cq(i′, P ′) ,

cq(i′′, P )
cq(′′, P ′)

)

= min
(

cq(i′, P )
d(i′, i∗) ,

cq(i′′, P )
d(i′′, i∗)

)
≤min

(
d(i′, i′′) + cq(i′′, P )

d(i′, i∗) ,
cq(i′′, P )
d(i′′, i∗)

)
(by Lemma 2)

≤min
(

d(i′, i∗) + d(i∗, i′′) + cq(i′′, P )
d(i′, i∗) ,

cq(i′′, P )
d(i′′, i∗)

)
≤min

(
d(i′, i∗) + d(i∗, i′′) + 2 · d(i′, i∗)

d(i′, i∗) ,
2 · d(i′, i∗)
d(i′′, i∗)

)
(as cq(i′′, P ) ≤ 2 · d(i′, i∗) )

≤max
z≥0

min(3 + 1/z, 2 · z) = (3 +
√

17)/2.

To show that this bound is tight consider the case that n = 28 and k = 7. Assume that the
individuals form four isomorphic sets of 7 individuals each such that each set is sufficiently
far from all other sets. The distances between the individuals in one set are given in the table
below.

a1 a2 a3 a4 a5 a6 a7

a1 0 1 2
√

17−1
2

√
17+1
2 − ϵ

√
17+1
2 − ϵ

√
17+3
2 − 2 · ϵ

a2 1 0 1
√

17−3
2

√
17−1
2 − ϵ

√
17−1
2 − ϵ

√
17+1
2 − 2 · ϵ

a3 2 1 0
√

17−1
2

√
17+1
2 − ϵ

√
17+1
2 − ϵ

√
17+3
2 − 2 · ϵ

a4
√

17−1
2

√
17−3
2

√
17−1
2 0 1− ϵ 1− ϵ 2− 2ϵ

a5
√

17+1
2 − ϵ

√
17+1
2 − ϵ

√
17−1
2 − ϵ 1− ϵ 0 0 1− ϵ

a6
√

17+1
2 − ϵ

√
17+1
2 − ϵ

√
17−1
2 − ϵ 1− ϵ 0 0 1− ϵ

a7
√

17+3
2 − 2ϵ

√
17+3
2 − 2ϵ

√
17+1
2 − 2ϵ 2− 2ϵ 1− ϵ 1− ϵ 10

Since k = 7 and there are four isomorphic groups, there exists a group that has at most one
representative in some realized panel. Note that the algorithm first opens the balls that are
centered at a5 and have radius equal to 1− ϵ. Assume that when this ball was opened in the
group that has one representative in the panel, the algorithm chooses a7 to be included in
the panel. Then, in this group the individuals a1, a2, a3 and a4 are eligible to choose a2 and
all of them reduce their distance by a multiplicative factor of at least (3 +

√
17)/2 as ϵ goes

to zero.

G. Augmented-FairGreedyCapture with Known q

Here, we show that there exists a version of FairGreedyCapture such that if q is known,
it provides an approximation of ((5+

√
41)/2) to the ex post q-core. As before, our algorithm

leverages the basic idea of the Greedy Capture algorithm.
Augmented-FairGreedyCapturek,q, in Algorithm 3, starts with an empty panel P

and grows a ball around every individual in [n] at the same rate. When a ball captures
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ALGORITHM 3: Augmented-FairGreedyCapture
Input: Individuals [n], metric d, k, q
Output: Panel P
R← [n]; δ ← 0; P ← ∅;
while |R| ≥ ⌈q · n/k⌉ do

Smoothly increase δ;
while ∃j ∈ R such that |B(j, δ) ∩R| ≥ ⌈q · n/k⌉ do

S ← ⌈q · n/k⌉ individuals arbitrary chosen from B(j, δ);
P̂ ← pick q individuals from S uniformly at random;
P ← P ∪ P̂ ;
R← R \ S;

end
end
if |P | < k then

P̂ ← k − |P | individuals from [n] \ P by picking i ∈ R with probability k/n and
i ∈ [n] \ (P ∪R) with probability k−|P |−|R|·k/n

n−|P |−|R| ;
P ← P ∪ P̂ ;

end

⌈q · n/k⌉ individuals (if more than ⌈q · n/k⌉ individuals have been captured, it chooses ex-
actly ⌈q · n/k⌉ by arbitrarily excluding some points on the boundary), the algorithm selects q
of them uniformly at random, includes them in the panel P , and disregards all the ⌈q · n/k⌉
individuals. When this happens, we say that the algorithm detects this ball. Unlike Greedy
Capture, we continue growing balls only around the individuals that are not yet disregarded,
i.e. detected balls are frozen. When fewer than ⌈q · n/k⌉ individuals remain, the algorithm
selects the remaining representatives from among the individuals who have not yet been in-
cluded in the panel as follows: each individual who has not been disregarded is selected with
probability k/n, and the remaining probability mass is allocated uniformly among the indi-
viduals who have been disregarded but not selected. This can be achieved through systematic
sampling (Yates, 1948).

Theorem 16. For every q, Augmented-FairGreedyCapturek,q is fair and in the ex post
((5 +

√
41)/2-q-core.

Proof. We start by showing that the algorithm is fair.

Lemma 5. Augmented-FairGreedyCapturek,q is fair.

Proof. Suppose that q·n/k is an integer. Then, each individual that is disergarded in the while
loop of the algorithm is included in the panel with probability exactly k/n. Now, suppose
that after the algorithm has detected t balls, less than q · n/k individuals have not been
disregarded. Then, when the algorithm exits the while loop we have that |R| = n− t · q · n/k
and k − |P | = k − t · q. But since,

|R| · k/n = k − t · q,

we conclude that the remaining k − t · q representatives are chosen uniformly among the
individuals in R. Thus, the algorithm returns a panel of size k and each i ∈ [n] is chosen with
probability k/n.
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Now, we focus on the case where q · n/k is not an integer. In this case, note that in the
while loop of the algorithm, less than k representatives are included in the panel, since q
representatives are included in it every time that ⌈q · n/k⌉ non-disregarded individuals are
captured from a ball. Moreover, each individual that is disregarded is chosen with probability
strictly less than k/n. Now suppose that after exiting the while loop, there are individuals
that have not been disregarded, i.e. |R| > 0. First, we show that the algorithm correctly
chooses another k − |P | representatives and outputs a panel of size k. The algorithm would
select each individual in R with probability k/n and allocates the remaining probability —
which is equal to k − |P | − |R| · k/n —uniformly among the n − |P | − |R| individuals that
have been disregarded but not selected in P . To satisfy fairness for people in R, it suffices
to show that |R| · k/n < k − |P |. Since for each individual i ∈ [n] \ R we have Pr[i ∈ P ] =
q/ ⌈q · n/k⌉ < k/n, then we have |P | = E[|P |] =

∑
i∈[n]\R Pr[i ∈ P ] < (n − |R|) · k/n. Thus,

k − |P | > k − (n− |R|) · k/n = |R| · k/n. Hence, the algorithm outputs panels of size k.
It remains to show that each individual in [n] \R, which is disregarded in the while loop,

is included in the panel with probability k/n. First, note that all of them are included in the
panel with the same probability. This holds, since each is selected with probability q/ ⌈q · n/k⌉
from the ball that captured them in the while loop, and, when not selected in the while
loop, they get an equal chance of selection of k−|P |−|R|·k/n

n−|R|−|P | . Since the size of the final panel
returned by the algorithm is always k, and by linearity of expectation, we have k = |R| ·
k/n +

∑
i∈[n]\R Pr[i]. By equality of Pr[i]’s, we conclude that all must be equal to k/n and

each individual in [n] is included in the panel with probability k/n.

We proceed by showing that Augmented-FairGreedyCapturek,q is in the ex post ((5+√
41)/2)-q-core. Let P be any panel that the algorithm may return. Suppose for contradiction

that there exists a panel P ′ such that Vq(P, P ′, (5 +
√

41)/2) ≥ |P ′| · n/k. This means that
there exists S ⊆ [n], with |S| ≥ |P ′| · n/k, such that:

∀i ∈ S, cq(i, P ) > (5 +
√

41)/2 · cq(i, P ′). (6)
Let T1, . . . , Tm be a partition of S with respect to P ′, as given in the first part of Lemma 1.

In a similar way as in the proof of Theorem 3, we can conclude that there exists a ball
centered at i∗

ℓ that has radius 2 · cq(i∗
ℓ , P ′) and captures all the individuals in Tℓ. Since there

are sufficiently many individuals in this ball, it is possible that the algorithm detected this
ball (or a nested one) during its execution. If this happened, this means that there are q
representatives in P that are located within the ball B(i∗

ℓ , 2 · cq(i∗
ℓ , P ′)). Then, we get that

cq(i∗
ℓ , P ) ≤ 2 · cq(i∗

ℓ , P ′) which contradicts Equation (6).
On the other hand, if the algorithm did not detect this ball (or a nested one) during its

execution, this means that some of the individuals in Tℓ have been disregarded before the
ball centered at i∗

ℓ captures sufficiently many of them. Hence, some individuals in Tℓ have
been captured from a different ball with radius at most 2 · cq(i∗

ℓ , P ′). Suppose that i′ is the
first individual in Tℓ that was captured from such a ball. Then, we get that q representatives
in P are within this ball, which means that cq(i′, P ) ≤ 4 · cq(i∗

ℓ , P ′), since the distance of i′

form any individual in this ball is at most equal to the diameter of the ball. We consider the
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minimum multiplicative improvement of both i∗
ℓ and i′:

min
(

cq(i′, P )
cq(i′, P ′) ,

cq(i∗
ℓ , P )

cq(i∗
ℓ , P ′)

)

≤min
(

cq(i′, P )
cq(i′, P ′) ,

d(i∗
ℓ , i′) + cq(i′, P )

cq(i∗
ℓ , P ′)

)
(by Lemma 2)

≤min
(

cq(i′, P )
cq(i′, P ′) ,

d(i∗
ℓ , ri′) + d(i′, ri′) + cq(i′, P )

cq(i∗
ℓ , P ′)

)
(by Triangle Inequality)

≤min
(

cq(i′, P )
cq(i′, P ′) ,

cq(i∗
ℓ , P ′) + cq(i′, P ′) + cq(i′, P )

cq(i∗
ℓ , P ′)

)
(as ri′ ∈ topq(i′, P ′) ∩ topq(i∗

ℓ , P ′))

≤min
(

4 · cq(i∗
ℓ , P ′)

cq(i′, P ′) , 5 + cq(i′, P ′)
cq(i∗

ℓ , P ′)

)
(as cq(i′, P ) ≤ 4 · cq(i∗

ℓ , P ′))

≤max
z≥0

min(4 · z, 5 + 1/z) = (5 +
√

41)/2

which violates Equation (6) and the theorem follows.
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