
CCCG 2019, Edmonton, Canada, August 8–10, 2019

A Simple Randomized Algorithm for All Nearest Neighbors

Soroush Ebadian∗ Hamid Zarrabi-Zadeh∗

Abstract

Given a set P of n points in the plane, the all near-
est neighbors problem asks for finding the closest point
in P for each point in the set. The following folklore
algorithm is used for the problem in practice: pick a
line in a random direction, project all points onto the
line, and then search for the nearest neighbor of each
point in a small vicinity of that point on the line. It
is widely believed that the expected number of points
needed to be checked by the algorithm in the vicinity
of each point is O(

√
n) on average. We confirm this

conjecture in affirmative by providing a careful analysis
on the expected number of comparisons made by the
algorithm. We also present a matching lower bound,
showing that our analysis is essentially tight.

1 Introduction

The all nearest neighbors problem considers finding, for
a set P of n points in the plane, the nearest neighbor of
each point in P . This is a fundamental and well-studied
problem in computational geometry, with various appli-
cations, e.g., in statistics, similarity search, and image
processing.

Several O(n log n) time algorithms are available for
the problem. In particular, it is well-known that the
Delaunay triangulation of P contains all edges con-
necting nearest neighbors. (See Figure 1.) Therefore,
one can solve the all nearest neighbors problem in the
plane in O(n log n) time using any of the optimal algo-
rithms available for the Delaunay triangulation [2, 4].
In higher fixed dimensions, one can solve the problem
in O(n log n) time using the algorithms of Clarkson [1]
and Vaidya [6]. Both algorithms make use of spatial
data partitioning trees, such as compressed quad-trees
[5] and R-trees [3].

In this paper, we study an extremely simple random-
ized algorithm for the all nearest neighbors problem that
uses no geometric data structure, and can be imple-
mented in a few lines of code. It basically projects all
the points onto a random line and searches for the near-
est neighbor of each point in a small vicinity of that
point on the line.

∗Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran. Email: ebadian@ce.sharif.edu,
zarrabi@sharif.edu.

Figure 1: An example of the problem. Each point is
connected to its nearest neighbor by an arrow. Dotted
segments show the Delaunay triangulation edges.

The main contribution of this paper is a careful and
tight analysis of the expected runtime of this random-
ized algorithm. More precisely, we show that the ex-
pected number of comparisons made by the algorithm
is O(αn

√
n) in total, where α =

√
log δ + 1, and δ is

the ratio of the largest to smallest pairwise distance be-
tween the points and their nearest neighbors. In prac-
tice, α is upper bounded by a constant. For exam-
ple, when input coordinates are represented by rational
numbers with 64-bit integers, we have δ ≤ 2128, and
hence,

√
log2 δ + 1 is at most 12.

The utter simplicity of the algorithm has made it a
popular choice in cases where a fast implementation is
preferable at the cost of slightly relaxing the optimal
runtime. Due to its simplicity and removing the over-
head of geometric data structures, the algorithm is even
faster in practice compared to the other standard al-
gorithms for the problem, such as Delaunay triangula-
tions, when input data has only a few thousand points.
Moreover, the algorithm finds the nearest neighbor of
each point independently, after an initial step, which
makes it highly flexible for parallel implementation.

2 Preliminaries

Let p and q be two points in the plane. We denote
the Euclidean distance of p and q by ∥pq∥. For a unit
vector u in the plane, we denote by ∥pq∥u the projected
distance between p and q along direction u. In other
words, ∥pq∥u = (p − q) · u = ∥pq∥ cos θ, where θ is the
angle between −→pq and u. Since cos θ ≤ 1, we always have
∥pq∥u ≤ ∥pq∥.

30th Canadian Conference on Computational Geometry, 2019

3 The Algorithm

In this section, we present the folklore randomized algo-
rithm for the all nearest neighbors problem, and prove
its correctness. The algorithm in its entirety is given in
Algorithm 1. It takes as input a set P = {p1, . . . , pn} of
n points in the plane, and returns for each point pi its
nearest neighbor qi in P .

Algorithm 1 All Nearest Neighbors(p1, . . . , pn)

1: pick a random unit vector u
2: for i from 1 to n do
3: di ←∞
4: for pj in increasing order of ∥pipj∥u ≤ di do
5: if ∥pipj∥ < di then
6: di ← ∥pipj∥, qi ← pj
7: return q1, . . . , qn

The algorithm works as follows. After picking a ran-
dom unit vector, the algorithm processes each point pi
by checking the points in P \ {pi} in their increasing
projected distance to pi, while keeping the minimum
Euclidean distance found so far in di. The search for
the nearest neighbor of pi is terminated whenever we
reach a point whose projected distance to pi is more
than di.

An example of the execution of Algorithm 1 for a
point p is illustrated in Figure 2. In this example, points
are numbered in their increasing projected distance to
p. The algorithm stops when it reaches point p5, whose
projected distance to p is more than the best distance
found so far, i.e., ∥pp2∥.

p

p1

p2

p3
p4

p5

u

Figure 2: An example of the execution of Algorithm 1.

To quickly iterate over the points in their increasing
projected distance from a point p, we can perform a
simple preprocess step as follows. We select a line ℓ
in direction u, project each point pi ∈ P to a point p′i
on ℓ, and sort the projected points along ℓ. Then, in
the main loop for each point pi, we keep two pointers
on ℓ initially set to the points right before and after p′i
on ℓ, walking in opposite directions. At each step, we
compare the distance of p′i to the two projected points
specified by the pointers, select whichever is smaller,
and advance the corresponding pointer to the next one.

This way, iterating over each point pj takes O(1) time
in the algorithm.

The correctness of the algorithm is proved in the fol-
lowing lemma.

Lemma 1 For each point pi ∈ P , the algorithm cor-
rectly finds the nearest neighbor of pi.

Proof. Fix a point pi, and let q be the nearest point
of pi in P . Suppose by way of contradiction that the
inner loop of the algorithm terminates on a point pj ,
before reaching q. Thus, ∥pipj∥u < ∥piq∥u. The inner
loop terminates if ∥pipj∥u > di, where di is the distance
between pi and a previously-visited point pk. Therefore,
we have ∥piq∥ ≥ ∥piq∥u > ∥pipj∥u > di = ∥pipk∥, which
contradicts the fact that q is the closest point to pi. □

4 The Analysis

Let P = {p1, . . . , pn} be the set of input points. For 1 ≤
i ≤ n, we denote by di the distance of pi to its nearest
neighbor in P . Let Pi = {pj ∈ P −{pi} : ∥pipj∥u ≤ di}
be the set of points compared by the algorithm during
the search for the nearest neighbor of pi.
Let X be a random variable indicating the total num-

ber of comparisons made by Algorithm 1. We can de-
compose X into n2 indicator variables

Xi,j =

{
1 if pj ∈ Pi,

0 otherwise.

Note that Xi,i = 0 for all i, and X =
∑

1≤i,j≤n Xi,j .

Lemma 2 For all 1 ≤ i, j ≤ n, i ̸= j,

Pr {Xi,j = 1} ≤ di
∥pipj∥

.

Proof. Fix two points pi and pj in P . For all r ≥ di, let
Cr be a circle of radius r centered at pi. Consider a strip
S of width 2di enclosing Cdi

orthogonal to direction u

pi
u

pj

θ

Cdi

Cr

S

Figure 3: An illustration of Lemma 2. The strip S is
shown in gray, and Cr ∩ S is shown by thick arcs.

CCCG 2019, Edmonton, Canada, August 8–10, 2019

(see Figure 3). Note that for all points p ∈ P , we have
p ∈ Pi if and only if p lies in S.
Let A(r) denote the length of Cr ∩ S, for all r ≥ di.

The curvature of the arcs in Cr ∩ S decreases as r is
increased, and hence, A(r) is a decreasing function on
[di,∞). Therefore, for all r ≥ di, A(r) ≤ A(di) = 2πdi.
Since direction u is chosen uniformly at random, the

angle θ between −−→pipj and u is uniformly chosen from
the range [0, 2π). In other words, pj lies uniformly at
random on a circle Cr with r = ∥pipj∥. Therefore, the
event pj lies in S corresponds to the fraction A(r)/2πr
of the points on Cr. Hence,

Pr {Xi,j = 1} = A(r)

2πr
≤ 2πdi

2πr
=

di
r
,

which completes the proof. □

Let E[X.,j] =
∑n

i=1 E[Xi,j]. An upper bound B on
E[X.,j] yields an upper bound nB on E[X], because
E[X] =

∑n
j=1 E[X.,j]. The rest of this section focuses

on finding such an upper bound on E[X.,j].

Lemma 3 For each 1 ≤ j ≤ n, there is a permutation
σ of {1, . . . , n} such that

E[X.,j] ≤ 3

n∑
i=1

dσi√∑i
k=1 dσk

2
.

Proof. Let pσ1 , . . . , pσn be the points of P ordered in
their increasing distance from pj . Note that pσ1 = pj .
For 1 ≤ i ≤ n, let Ci be a circle of radius dσi

/2 centered
at pσi

. For any pair of points pσi
and pσj

, ∥pσi
pσj
∥ ≥

max{dσi
, dσj
} ≥ (dσi

+ dσj
)/2. Therefore, all Ci’s are

non-overlapping.
Fix an index 2 ≤ i ≤ n. Let ℓ = ∥pσipj∥, and Bi =

{C1, . . . , Ci}. Every circle in Bi has radius at most ℓ/2,
and its center lies within distance ℓ to pj . (See Figure 4.)
Therefore, all circles in Bi fit in a disk C of radius 3

2ℓ
centered at pj . As the circles are non-overlapping, the
area of C must be at least as large as the total area of

the circles in Bi. Therefore, (3ℓ2)
2π ≥

∑i
k=1(

dσk

2)2π,

and thus, ℓ = ∥pσi
pj∥ ≥ 1

3

√∑i
k=1 dσk

2. Now,

E[X.,j] =

n∑
i=1

E[Xi,j] ≤
∑

i∈[n]−{j}

di
∥pipj∥

(by Lemma 2)

=

n∑
i=2

dσi

∥pσi
pj∥
≤

n∑
i=2

3 · dσi√∑i
k=1 dσk

2
,

which implies the lemma’s statement. □

Based on the upper bound proved in Lemma 3, we define
the following function:

f(a1, . . . , an) =

n∑
i=1

ai√∑i
j=1 aj

2
,

C4

C2

C3

C6

`
pj

C5

C1

Figure 4: A set of non-overlapping circles {C1, . . . , C6}.

where a1, . . . , an is a sequence of real numbers. We
prove some useful properties of f in the next lemmas.

Lemma 4 Let A = {a1, . . . , an} be a set of positive real
numbers, and σ be a permutation of A. Then f(σ) is
maximized if σ is a non-decreasing sequence.

Proof. Suppose by contradiction that f is maximized
by a permutation σ = {σ1, σ2, . . . , σn} which is not non-
decreasing. Then, there exists an index i such that x =
σi > σi+1 = y. Let π = {σ1, . . . , σi+1, σi, . . . , σn} be
the ordering achieved by swapping σi and σi+1. As σ
is an ordering that maximizes f , we have f(σ) ≥ f(π).
Since the two permutations only differ in the i-th and
(i + 1)-th term, by the definition of f , and by setting

s = x2 + y2 +
∑i−1

j=1 σj
2, we have

x√
s− y2

+
y√
s
≥ x√

s
+

y√
s− x2

which yields

x ·
[

1√
s− x2

− 1√
s

]−1

≥ y ·

[
1√

s− y2
− 1√

s

]−1

.

Since function z ·
[

1√
s−z2

− 1√
s

]−1

is decreasing in the

range (0, s), the last inequality implies x ≤ y. But this
contradicts the fact that x > y. □

Lemma 5 For any integer n ≥ 1, and any real number
a ≥ 0,

n∑
i=1

1√
a+ i

≤ 2
√
n.

Proof. Since 1√
x
is a decreasing function on (0,+∞),

for any real number b > 1, we have∫ b

x=b−1

1√
x

>

∫ b

x=b−1

1√
b

=
1√
b
.

Therefore,

n∑
i=1

1√
a+ i

≤
∫ a+n

x=a

1√
x
dx = 2(

√
a+ n−

√
a) ≤ 2

√
n,

30th Canadian Conference on Computational Geometry, 2019

where the last inequality follows from the fact that√
x+ y ≤

√
x+
√
y, for all x, y ≥ 0. □

Lemma 6 Given real numbers a1, . . . , an with 1 ≤ ai ≤
c, for some constant c ≥ 1,

f(a1, . . . , an) ≤ 2b
√
n
√
logb c+ 1.

for all b > 1.

Proof. Let âi = b⌊logb ai⌋. Since b > 1 and ai ≥ 1, we
have âi ≤ ai < b · âi. Therefore,

f(a1, . . . , an) =

n∑
i=1

ai√∑i
j=1 aj

2

≤
n∑

i=1

b · âi√∑i
j=1 â

2
j

= b · f(â1, . . . , ân).

By Lemma 4, f(â1, . . . , ân) is maximized when â’s are
sorted non-decreasingly. Let si = |{j : ⌊logb aj⌋ = i}|,
for all i ∈ {0, 1, . . . , ⌊logb c⌋}. Then

f(â1, . . . , ân) ≤
⌊logb c⌋∑
i=0

si∑
k=1

bi√
k · b2i +

∑i−1
j=0 sj · b2j

=

⌊logb c⌋∑
i=0

si∑
k=1

1√
k +

∑i−1
j=0 sj · b2(j−i)

which by Lemma 5 is at most 2
∑⌊logb c⌋

i=0

√
si. This sum

is maximized at equality. Hence, as
∑

si = n, we have

⌊logb c⌋∑
i=0

√
si ≤

⌊logb c⌋∑
i=0

√
n

⌊logb c⌋+ 1
≤
√
n ·

√
logb c+ 1.

Therefore, f(a1, . . . , an) ≤ 2b
√
n ·

√
logb c+ 1. □

Now, we have all the ingredients needed to prove the
main theorem of this section.

Theorem 7 The expected runtime of Algorithm 1 on
a set P of n points is O(n

√
n ·
√
log δ + 1), where δ =

maxi {di} /mini {di} and di = minq∈P\{pi}∥piq∥.

Proof. By Lemma 3, E[X.,j] is upper bounded by
3f(σ1, . . . , σn) for some permutation σ of {d1, . . . , dn}.
Scaling all variables by a constant does not change
f(σ1, . . . , σn). Therefore, we can assume w.l.o.g. that
1 ≤ σi ≤ δ for all i. By setting b = 2 and c = δ in
Lemma 6, we get

E[X.,j] ≤ 12
√
n
√
log2 δ + 1.

Therefore, E[X] =
∑n

j=1 E[X.,j] is upper bounded by

12n
√
n
√
log2 δ + 1, which completes the proof. □

4.1 Lower Bound

In this section, we show that the analysis presented in
Section 4 is essentially tight by providing a lower bound
example on which Algorithm 1 has a matching expected
runtime. Our example is simply formed by the points
of a

√
n ×
√
n square lattice. The nearest neighbor to

each point in this lattice has distance exactly one, and
hence, δ = 1 in this case. The following theorem proves
a lower bound of Ω(n

√
n) on the expected runtime of

the algorithm on this example, which matches the upper
bound of O(n

√
n) proved in the previous section.

Theorem 8 The expected runtime of Algorithm 1 on a√
n×
√
n square lattice is Ω(n

√
n).

Proof. Let P = {p1, . . . , pn} be the set of points on the
lattice, and let u be the random unit vector chosen by
the algorithm. The nearest neighbor to each point in P
has distance one. Therefore, if X is a random variable
indicating the size of the set {(pi, pj) : ∥pipj∥u ≤ 1},
then E[X] is a lower bound on the expected runtime of
the algorithm.

We first claim that Pr {∥pipj∥u ≤ 1} ≥ 1
π·∥pipj∥ , for

all 1 ≤ i, j ≤ n. Fix two points pi and pj . Let ℓ be a
line in direction u passing through pi, and let p′j be the
projection of pj onto ℓ. Therefore, pi, pj , and p′j form a
right triangle. (See Figure 5.) Now, ∥pipj∥u ≤ 1 holds
if and only if

∠pipjp′j = arcsin(
∥pip′j∥
∥pipj∥

) ≤ arcsin(
1

∥pipj∥
).

As ∠pipjp′j is chosen randomly, and arcsin(x) > x for
all 0 < x ≤ 1, we have

Pr {∥pipj∥u ≤ 1} ≥ 1

π
arcsin(

1

∥pipj∥
) >

1

π · ∥pipj∥
.

Every two points in the lattice have distance at most
2
√
n. Therefore, Pr {∥pipj∥u ≤ 1} > 1

2π
√
n
. Thus,

E[X] >
n(n− 1)

2π
√
n

,

and hence, the expected runtime of the algorithm is
Ω(n
√
n). □

pj

pi

p′j,θ1 1

p′j,θ2

p′j,θ3

θ1 θ2
θ3

Figure 5: Projection of pj on different lines specified by
the random vector u.

CCCG 2019, Edmonton, Canada, August 8–10, 2019

5 Conclusions

In this paper, we analyzed an extremely simple random-
ized algorithm for the all nearest neighbors problem.
We proved that the algorithm has O(αn

√
n) expected

runtime, where α is a parameter of the input point set,
usually bounded by a constant in practice.
Our analysis can be extended in a natural way to

the case of general Lp metric, yielding the same ex-
pected runtime. For higher d-dimensional space, we
conjecture that the expected runtime of the algorithm
is O(n2− 1

d poly(α)). We can also extend the algorithm
to report k nearest neighbors of each point. While
our analysis immediately implies an upper bound of
O(kα · n

√
n) on the expected number of comparisons

made by the algorithm, it is intriguing to obtain a
tighter analysis for this variant of the problem.

Acknowledgments The authors would like to thank
Michael Tikhomirov for suggesting the analysis of the
algorithm studied in this paper as an open problem.

References

[1] K. L. Clarkson. Fast algorithms for the all nearest neigh-
bors problem. In Proc. 24th Annu. IEEE Sympos. Found.
Comput. Sci., pages 226–232, 1983.

[2] S. Fortune. Voronoi diagrams and delaunay triangula-
tions. In Computing in Euclidean geometry, pages 225–
265. 1995.

[3] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proc. ACM SIGMOD Conf., pages
47–57, 1984.

[4] D.-T. Lee and B. J. Schachter. Two algorithms for con-
structing a Delaunay triangulation. Int. J. of Comput.
& Inform. Sci., 9(3):219–242, 1980.

[5] H. Samet. The quadtree and related hierarchical data
structures. ACM Computing Surveys, 16(2):187–260,
1984.

[6] P. M. Vaidya. An O(n logn) algorithm for the all-
nearest-neighbors problem. Discrete Comput. Geom.,
4(2):101–115, 1989.

