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Abstract

In public-private graphs, users share one public
graph and have their own private graphs. A pri-
vate graph consists of personal private contacts that
only can be visible to its owner, e.g., hidden friend
lists on Facebook and secret following on Sina
Weibo. However, existing public-private analytic
algorithms have not yet investigated the dense sub-
graph discovery of k-truss, where each edge is con-
tained in at least k− 2 triangles. This paper aims at
finding k-truss efficiently in public-private graphs.
The core of our solution is a novel algorithm to up-
date k-truss with node insertions. We develop a
classification-based hybrid strategy of node inser-
tions and edge insertions to incrementally compute
k-truss in public-private graphs. Extensive exper-
iments validate the superiority of our proposed al-
gorithms against state-of-the-art methods on real-
world datasets.

1 Introduction
Online social networks (e.g., Facebook, Twitter, Instagram,
and Sina Weibo) have become vital platforms for connect-
ing users to share information, post daily life events, and
spread influence [Kempe et al., 2003; Wilder et al., 2018;
Zhang et al., 2017; Zhang et al., 2018b; Li et al., 2018].
Due to privacy concerns, users tend to hide their connections,
leading such private relationships not visible to other users in
public but only themselves. For instance, Facebook users are
likely to conceal their friend-list [Dey et al., 2012]; Weibo
users may prefer using the secret following feature, which
hides their interested followees. Public-private graphs are de-
veloped to model this kind of social networks [Chierichetti et
al., 2015]. A public-private network contains a public graph
which is visible and accessible to everyone; in addition, each
vertex has a personal private graph only visible to its owner.
Therefore, in the view of each user, the social network is a
union of the public graph and its own private graph which can
be significantly different for distinct users. Recently, many
graph analytic tasks have been investigated on public-private
networks, such as all-pairs shortest path distances, node sim-
ilarities, and correlation clustering.
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Figure 1: An example of public-private graph. Black solid edges are
public. Blue dashed edges are private to v5, and red dashed edges
are private to v3. The gray area is a 5-truss in personalized pp-graph
of v5 as gv5 .

Dense subgraph discovery is a fundamental network anal-
ysis task. Many dense subgraphs have been proposed and in-
vestigated, e.g., clique, quasi-clique [Pei et al., 2005], n-clan
[Mokken, 1979], n-club [Mokken, 1979], and k-plex [Xiao
et al., 2017]. Recently, a popular notion of dense subgraphs
that has been studied is k-truss. A k-truss is the largest sub-
graph of a graph such that each edge is contained in at least
k − 2 triangles within this subgraph. Finding k-trusses has
many useful applications such as community search [Jiang et
al., 2018], complex network visualization [Zhao and Tung,
2012], and task-driven team formation [Huang et al., 2016].
To the best of our knowledge, finding k-truss over public-
private networks has not yet been studied in the literature. In
this paper, we formulate the problem of finding public-private
k-truss as follows. Given a query vertex and parameter k, the
problem is to find k-truss in the public-private graph owned
by this query vertex.

Efficient extraction of public-private k-truss raises signif-
icant challenges. A straightforward approach is to ignore
users’ private edges, which can lead to inaccurate results. An-
other approach is to apply truss decomposition on the public-
private graph of the query vertex to extract the k-truss with the
given parameter k. However, this method computes k-truss
from scratch, which is particularly inefficient for large-scale
networks. To tackle these challenges, we develop an index-
based computational paradigm to efficiently update a truss in-
dex on a public graph using the edges in a private graph, with
a minimal amount of recomputation on the public graph.

To summarize, we make the following contributions:
• We formulate a new problem of finding k-truss over

public-private graphs, that is finding k-truss in public-



private graph owned by a given query vertex (Section 3).
• We analyze the structural properties of k-truss on public-

private networks. Based on the observations, we de-
velop k-truss updating algorithm using a hybrid strategy
of node/edge insertions/deletions (Section 4).
• We validate the efficiency of our proposed methods

through extensive experiments on real-world datasets of
public-private networks (Section 5).

2 Related Work
Several essential problems of graph analysis on public-private
graphs have been studied in [Chierichetti et al., 2015; Archer
et al., 2017], such as the size of reachability tree [Cohen
and Kaplan, 2007], all-pairs shortest paths [Das Sarma et al.,
2010], pairwise node similarities [Haveliwala, 2002], corre-
lation clustering [Bansal et al., 2004]. Moreover, the public-
private model of data summarization has been investigated
and solved by a fast distributed algorithm [Mirzasoleiman
et al., 2016]. In addition, several studies on k-truss min-
ing have been investigated recently [Cohen, 2008; Zhang et
al., 2018a]. Equivalent concepts of k-truss termed as differ-
ent names include triangle k-core [Zhang and Parthasarathy,
2012], k-dense community [Saito et al., 2008; Gregori et al.,
2011], and k-mutual-friend subgraph [Zhao and Tung, 2012].
Truss decomposition is to find the non-empty k-truss for all
possible k values in a graph. Algorithms of truss decom-
position have also been studied in different types of graphs
(e.g., directed graphs [Takaguchi and Yoshida, 2016], uncer-
tain graphs [Zou and Zhu, 2017], and dynamic graphs [Zhang
and Parthasarathy, 2012; Huang et al., 2014]). In contrast
to the above studies, finding k-truss over public-private net-
works is studied for the first time in this paper.

3 Preliminary
We consider a simple and undirected graph G = (V,E)
where V and E are the vertex set and edge set respectively.
We define N(v) = {u ∈ V : (v, u) ∈ E} as the set of neigh-
bors of a vertex v, and d(v) = |N(v)| as the degree of v inG.
For a set of vertices S ⊆ V , the induced subgraph of G by S
is denoted by G[S], where the vertex set is S and the edge set
is E(G[S]) = {(v, u) ∈ E : v, u ∈ S}.

3.1 Public-Private Graphs
We first introduce a model of public-private graph G
[Chierichetti et al., 2015]. A public-private graph G consists
of one public graph and multiple private graphs. Given a pub-
lic graph G = (V,E), the vertex set V represents users, and
the edge set E represents connections between users. For
each vertex u in the public graph G, u has an associated pri-
vate graph Gu = (Vu, Eu), where Vu ⊆ V are the users from
public graph and the edge set Eu satisfies Eu ∩ E = ∅. The
public graph G is visible to everyone, and the private graph
Gu is only visible to user u. Thus, in the view of user u,
she/he can see and access the structure of graph that is the
union of public graph G and its own private graph Gu, i.e.,
G ∪ Gu = (V,E ∪ Eu) [Huang et al., 2018]. The personal-
ized public-private graph (a.k.a. pp-graph in short) owned by
a vertex u is defined as follows.

Definition 1 (Personalized PP-Graph). Given a public-
private graph G and a vertex u, the personalized pp-graph of
u is denoted by gu, where gu = G∪Gu = (V,E∪Eu). Here,
Eu are the private edges only visible to u, and E ∩ Eu = ∅.

3.2 K-Truss
A triangle is a cycle of length 3 in graphs. Given three vertices
u, v, w ∈ V , the triangle formed by u, v, w is denoted by
4uvw. The support of an edge is defined as follows.

Definition 2 (Support). Given a subgraph H ⊆ G, the sup-
port of an edge e = (u, v), denoted by supH(e), is de-
fined as the number of triangles containing edge e in H , i.e.,
supH(e) = |{4uvw : (u, v), (u,w), (v, w) ∈ E(H)}|.

We drop the subscript and denote the support as sup(e),
when the context is obvious. Based on the support, we give a
definition of k-truss [Wang and Cheng, 2012] as follows.

Definition 3 (K-Truss). A k-truss H of graph G is defined as
the largest subgraph of G such that every edge e has support
of at least k − 2 in this subgraph, i.e., supH(e) ≥ k − 2.

3.3 Problem Statement
The problem of public-private k-truss discovery studied in
this paper is formulated as follows.

Problem formulation: Given a public-private graph G, a ver-
tex u ∈ V , and an integer k ≥ 2, the problem is to find the
k-truss in the personalized pp-graph gu where gu = G ∪Gu.

Example 1. Consider the public-private graph G in Figure
1, a query vertex v5, and k = 5. Black edges are public. Blue
edges are private to v5. The answer of 5-truss in personalized
pp-graph gv5 is the subgraph depicted in the gray region.

4 Proposed Algorithms
This section introduces our algorithms for finding k-truss in
personalized pp-graph gu, w.r.t. a query vertex u. We first
give an overview of our ideas in Section 4.1, and then present
a well thorough description of technical details afterward.

4.1 Solution Overview
We consider two different ideas.

Solution 1: online search algorithm. One intuitive approach
is to apply truss decomposition on pp-graph gu to iteratively
remove edges with less than k − 2 triangles and output the
remaining graph as answers. However, such computing k-
truss from scratch on gu for each query vertex u is obviously
inefficient for big graphs with a large number of vertices.

Solution 2: index-based search algorithm. Recall that per-
sonalized pp-graph gu = G ∪ Gu has a public graph G and
a private graph Gu only available to u. The public graph
G is available to everyone, and the structure of G is identi-
cal to each query vertex u. The idea of index-based search
algorithms is to construct a structural index of public graph
G offline, and then online find k-truss based on the precom-
puted index of G and additional graph Gu. In the following,
we introduce a concept of trussness, which is useful for con-
structing the truss-index for k-truss discovery.



Definition 4 (Trussness). Given a subgraph H ⊆ G, the
trussness ofH is defined as τ(H) = mine∈E(H) {supH(e)+
2}. The trussness of an edge e ∈ H is defined as the largest
number k such that a connected k-truss H ′ contains e, i.e.,

τH(e) = max
H′⊆H,e∈E(H′)

τ(H ′).

We drop the subscript and denote τG(e) as τ(e) when the
context is obvious. According to Def. 4, k-truss of G is the
union of all edges e with τ(e) = k. The truss-index of public
graph G keeps the trussness of all edges in G. Given a truss-
index of G, the remaining issue is how to update the truss-
index for pp-graph G ∪Gu, w.r.t. the additional Gu.

Updating truss-index using edge insertions. A simple ap-
proach is to add edges of Gu one-by-one into G and up-
date the truss-index accordingly, by using an existing edge-
insertion algorithm [Huang et al., 2014]. However, when the
number of private edges Eu is large, the adaptation of edge-
insertion may be inefficient. For example, consider the ex-
ample graph G in Figure 1 and query vertex v5 with 4 private
edges. It invokes the edge-insertion algorithm for 4 times.

Our approach. To address the above issue, we propose a
batch-update algorithm using node-insertion. The idea is to
simultaneously insert a new node u with all its incident edges
into graph G at the same time, and call node-insertion algo-
rithm only once. In the above example, it needs only one
node-insertion of the isolated node v5 and all of its private
edges. To handle the truss-index update with node insertions
efficiently, the key is to identify the affected region in the
graph precisely. We provide a theoretical analysis to define
the affected scope in Section 4.2, and the detailed algorithm
of node-insertion in Section 4.3. However, when u has both
public and private edges, we can first remove u with its pub-
lic edges, and re-insert it with both public and private edges
incident to u using node-insertion. This method has signif-
icant advantages outperforming edge-insertion when private
edges of u are much larger than public edges of u. On other
cases, edge-insertion method may perform better. Thus, we
construct a classifier to determine which algorithms of node-
insertion and edge-insertion should be applied in Section 4.4.

4.2 Theoretical Analysis
In this section, we present useful rules for truss-index updat-
ing with node insertion/deletion. Consider a vertex v and the
set of edges incident to v as E(v). In the case of node inser-
tion, we insert a new vertex v and its incident edgesE(v) into
G, where E(v)∩E(G) = ∅; in the case of node deletion, we
delete vertex v and all its incident edges E(v) from G, where
E(v) ⊆ E(G). We use τ(e) and τ̂(e) to denote trussness
of edge e before and after updating operation. Motivated by
[Huang et al., 2014], the following three updating rules hold.

Rule 1: If new node v is inserted into graph G with τ̂(v) =
maxe∈E(v) τ̂(e) = l, then ∀e ∈ E(G) with τ(e) ≥ l, τ̂(e) =
τ(e) holds.

Rule 2: If node v is deleted from graph G with τ(v) =
maxe∈E(v) τ(e) = l, then ∀e ∈ E(G) \ E(v) with τ(e) > l,
τ̂(e) = τ(e) holds.

Rule 3: ∀e ∈ E(G) \ E(v), | τ̂(e)− τ(e)| ≤ 1 holds.
Rules 1 and 2 hold because node v is not present at any

(l + 1)-truss subgraph. Rule 3 holds because for each edge,
at most one triangle will be formed/deformed after one node
insertion/deletion, hence sup(e) will change at most by one.

In the following, we focus on node insertions. In order
to apply Rule 1 for pruning, the value of τ̂(v) is required.
However, an exact computation of τ̂(v) is costly expensive.
Instead, we develop another rule based on an upper bound of
τ̂(v) below.

Rule 1’: If node v is inserted into graph G and τ̂(v) ≥ τ̂(v),
then ∀e ∈ E(G) with τ(e) ≥ τ̂(v), τ̂(e) = τ(e) holds.

To desire an upper bound of τ̂(e), we need a new definition
of (k, d)-neighborhood as follows.
Definition 5 ((k, d)-neighborhood). Given a graphG, (k, d)-
neighborhood of vertex v, denoted by Gk,dv , is the maximal
subgraph H ⊆ G[N(v)] holding

1. τG(e) ≥ k, ∀e ∈ E(H) and
2. dH(u) ≥ d, ∀u ∈ V (H).

Lemma 1. Consider a new node v and its incident edges
E(v) = {(v, w) : w ∈ N(v)} are inserted into graph G.
For each new edge e = (v, w) in the new graph Gnew, the
trussness of e, τ̂(e), satisfies klow(e) ≤ τ̂(e) ≤ kup(e) where

klow(e) = max{k : w ∈ Gk,k−2
v }

and
kup(e) = max{k : w ∈ Gk−1,k−2

v }.
Moreover, | kup(e)− klow(e)| ≤ 1 holds.

Proof. We consider an edge e∗ = (v, w∗) in Gnew. For sim-
plification, we denote by klow(e∗) = kl and kup(e∗) = ku.

First, we prove τ̂(e∗) ≥ klow(e∗) = kl. To prove it, we
show that there exists a kl-truss H∗ of Gnew containing e∗.
By the definition of klow(e), there exists a kl-truss H of G,
i.e., ∀e ∈ E(H), supH(e) ≥ kl − 2. Let H∗ = (V (H) ∪
{v}, E(H) ∪ {(w, v) | w ∈ Gkl,kl−2

v }), which adds vertex v
and v’s incident edges (w, v) with klow((w, v)) ≥ kl into H .
For each edge (w, v) ∈ E(H∗)\E(H), w and v have at least
kl − 2 common neighbors in H∗ by the second condition of
Def. 5, indicating supH∗((w, v)) ≥ kl−2; moreover, for each
edge e ∈ E(H∗) ∩ E(H) , supH∗(e) ≥ supH(e) ≥ kl − 2.
As a result, H∗ is a kl-truss, and τ̂(e∗) ≥ τH∗(e∗) ≥ kl.

Second, we prove τ̂(e∗) ≤ kup(e∗) = ku by contradiction.
Assume that τ̂(e∗) ≥ ku + 1, there exists a (ku + 1)-truss
H containing e∗ in Gnew. We delete the node v and all its
incident edges (v, w) from H , which leads to a new graph
H∗. By Rule 3, the trussness of each edge e in H∗ decreases
by at most 1 after the node deletion of v, i.e., τH∗(e) ≥ ku.
Let the vertex set S = V (H) ∩ N(v). Obviously, H∗[S] =
H[S]. For each edge e in H∗[S], τG(e) ≥ τH∗(e) ≥ ku; for
each vertex w in H[S], the edge (v, w) belongs to (ku + 1)-
truss H , indicating w has at least ku − 1 neighbors in H and
also in H[S], i.e., dH∗[S](w) = dH[S](w) ≥ ku − 1. By
Def. 5, H∗[S] is a (ku, ku− 1)-neighborhood as Gku,ku−1

v in
G. Thus, max{k : w ∈ Gk−1,k−2

v } ≥ ku + 1. However, by
the definition of kup(e), ku = max{k : w ∈ Gk−1,k−2

v } and
ku ≥ ku + 1, which is a contradiction.



Algorithm 1 Node-Insertion Updating Algorithm

Input: G = (V,E), new node v, edge set E(v)
Output: τ̂(e) for each e ∈ E ∪ E(v)

1: G← G ∪ (v,E(v))
2: Compute klow(e), kup(e) for all e ∈ E(v) by Algorithm

2
3: for e in E(v) do
4: τ(e)← klow(e)
5: if klow(e) < kup(e) then
6: Lklow(e) ← Lklow(e) ∪ {e}
7: for e = (u,w) in GN(v) do
8: if τ(e) < min{kup((u, v)), kup((w, v))} then
9: Lτ(e) ← Lτ(e) ∪ {e}

10: kmax ← max{kup(e) : e ∈ E(v)} then
11: for k ← kmax − 1 to 2 do
12: UpdateTrussness(k, Lk)

Third, we prove |ku − kl| ≤ 1. Obviously, kl ≤ ku and
kl ≤ ku + 1. We next prove ku ≤ kl + 1. According to the
definition of kup(e), we have ku = max{k : w ∈ Gk−1,k−2

v }
≤ max{k : w ∈ Gk−1,k−3

v }. Moreover, max{k : w ∈
Gk−1,k−3
v } = max{k : w ∈ Gk,k−2

v } + 1 = kl + 1 by the
definition of klow(e), and we derive ku ≤ kl + 1. As a result,
|ku − kl| ≤ 1.

Scope of Affected Edges. Let τ̂(v) = max{kup(e) : e ∈
E(v)} be an upper bound of τ̂(v), and the weight of a triangle
be the minimum trussness of edges within this triangle.

1. Node Insertion. Edge e = (x, y) ∈ E(G) ∪ E(v) with
τ(e) < τ̂(v), may have trussness increment if (v, x, y)
form a triangle of weight τ(e), or e is connected to v
through a series number of adjacent triangles each with
weight of τ(e).

2. Node Deletion. Edge e = (x, y) ∈ E(G) − E(v) with
τ(e) ≤ max{τ(e) : e ∈ E(v)} may have trussness
decrement if (v, x, y) form a triangle of weight τ(e) or
e is connected to v through a series number of adjacent
triangles each with weight of τ(e).

4.3 Node-Insertion Updating Algorithm
We propose Algorithm 1 to update the truss-index with in-

serting node v and its incident edges E(v) to G . Lower and
upper bounds of each edge can be computed by calling Al-
gorithm 2 (line 2). According to the scope of affected edges,
first, trussness of newly added edges is set to klow(e), and
then candidate edges for updating are found through lines 3-
10. Newly added edges with klow(e)+1 = kup(e) might have
trussness increase which are found in lines 3-6. Furthermore,
any edge in G[N(v)] that might get affected is found through
lines 7-9. According to Rule 1’, kmax is set to maximum
of the upper bounds which results in pruning all unaffected
edges which have trussness of at least kmax. The procedure
of level-by-level updating truss-index (line 12) follows the
edge-insertion algorithm [Huang et al., 2014].

Algorithm 2 Node-Insertion Bound Computing Algorithm

Input: G = (V,E), new node v, edge set E(v),
type ∈ {low, up}
Output: {ktype(e) : e ∈ E(v)} trussness bound according
to type

1: H ← G[N(v)]; k ← 2
2: while H 6= ∅ do
3: while ∃e ∈ E(H) with τH(e) < k do
4: Delete edge e from H;
5: while ∃dH(u) < (k − 2 if type = low else k − 1) do
6: Delete vertex u and its incident edges from H;
7: ktype((v, u))← (k − 1 if type = low else k)
8: k ← k + 1

Computing kup(e) and klow(e). Algorithm 2 computes the
upper bound kup(e) and lower bound klow(e) in Lemma 1.
Computing lower bounds and upper bounds are almost the
same, and the same codes can be used with passing a param-
eter type ∈ {low, up} to indicate which bound to compute.
Consider the case where type is low and lower bound is re-
quired. It starts with an induced subgraph G[N(v)] as H ,
which is G2,0

v . In each iteration refines H to reach Gk,k−2
v

from Gk−1,k−3
v . Assume the (k − 1)-th step has correctly

stored Gk−1,k−3
v in H . It first removes edges with trussness

less than k (lines 3-4), and then removes vertices with degree
less than k−2 (lines 5-7), until the resulting graphH becomes
Gk,k−2
v . Each node removed in this iteration is member of

Gk−1,k−3
v but not Gk,k−2

v ; therefore the bound k − 1 finally
found by the algorithm is the maximum possible value.

4.4 A Classification-based Hybrid Algorithm for
Finding K-Truss in Public-Private Graphs

We present a classification-based algorithm of updating truss-
index from public graph G to pp-graph G ∪ Gu. The algo-
rithm is outlined in Algorithm 3, which uses a hybrid strategy
of updating with node/edge insertions/deletions. Specifically,
we have two following strategies to update truss-index.

• Edge-PP. Add private edges of E(Gu) one by one into
G using edge-insertion algorithm [Huang et al., 2014].

• Vertex-PP. Remove vertex u with its public edges by
node-deletion algorithm, then add back u with all inci-
dent edges to obtain G ∪ Gu using node-insertion algo-
rithm in Algorithm 1.
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random query nodes in PP-DBLP-2013.



Algorithm 3 Hybrid-PP Algorithm

Pre-process:
Input: G = (V,E), truss-index {τ(e) : ∀e ∈ E}
Output: Classification model C : D → {CV , CE}

1: Training vertex set S ← sample nodes(G)
2: for v in S do
3: TV (v), TE(v)← Runtime of Vertex-PP and Edge-PP

on v
4: X = [feature(v) : v ∈ S]
5: Y = [CV if TV (v) < TE(v) else CE : v ∈ S]
6: C ←Classifier-Construction(X,Y)

Query:
Input: query node u, private graph Gu, and integer k
Output: the k-truss in G ∪Gu

1: if C.predict(feature(u)) = CV then
2: Update index using Vertex-PP (u)
3: else Update index using Edge-PP (u)
4: return Query KTruss(u, k) on updated index

Note that Vertex-PP can not directly add u’s private edges
into G, as Lemma 1 holds only for the insertion of a com-
pletely new vertex. Both algorithms update the truss-index
correctly; however, the optimal choice between Edge-PP and
Vertex-PP is not straightforwardly clear, because multiple as-
pects affect efficiency. Determining efficiency performance
requires a global knowledge of the whole graph structure.
Local topological properties is not sufficient to decide which
algorithm works faster. For example, Figure 2 shows the dis-
tribution of cases in which Vertex-PP or Edge-PP perform at
least two times faster than the other algorithm; it consists of
1367 randomly selected nodes w.r.t their public and private
degrees sampled from PP-DBLP-2013 dataset [Huang et al.,
2018]. It is clear by Figure 2 that the simple distinction of
degree is not sufficient to make good decision upon which al-
gorithm to use. Thus, we formulate and tackle the problem of
using Edge-PP and Vertex-PP as a classification task.

Algorithm 3 predicts which updating method between
Vertex-PP and Edge-PP works faster in terms of the given
query, and runs that algorithm to answer the query. There are
two classes CV and CE that each node u ∈ V is in class CV
if Vertex-PP works faster than Edge-PP to update index from
public graph G to G∪Gu and the similar for CE . We present
each node u using several features including: 1) public degree
of u; 2) private degree of u; 3) the number of triangles con-
taining u respectively in public graph G, private graph Gu,
and pp-graph gu; and 4) the trussness sum of public edges;

5 Experiments

Datasets: We used four public-private graphs of PP-DBLP
[Huang et al., 2018] in Table 1.1 Published articles make the
public network, and ongoing collaborations form the private
networks which are only known by partial authors. We also
used eight real-world graphs available from SNAP [Leskovec

1https://github.com/samjjx/pp-data

Name |V | |E| |Vprivate| |Eprivate|

PP-DBLP-2013 1,791,688 5,187,025 804,121 3,166,863
PP-DBLP-2014 1,791,688 5,893,083 669,138 2,491,847
PP-DBLP-2015 1,791,688 6,605,428 502,654 1,719,794
PP-DBLP-2016 1,791,688 7,378,090 257,129 719,204

Table 1: Network Statistics of Real-world Public-Private Graphs

Name |V | |E| |Vt|
Avg. time per node (s) Speedup
Node-ins. Edge-ins.

EmailEuAll 265K 420K 292 0.38 4.20 10.96
Wikivote 7K 103K 534 0.73 28.53 39.10
EmailEnron 36K 367K 485 0.83 24.10 29.03
Gowalla 196K 1.9M 156 2.99 102.39 34.27
WikiTalk 2.4M 5M 191 40.54 2017.26 49.76
Flickr 80K 11.8M 697 96.30 2195.57 22.80
Digg 771K 7.3M 471 142.82 5741.43 40.20
LiveJournal 4M 34.7M 377 142.63 5515.66 38.67

Table 2: Comparison of Node-insertion and Edge-insertion methods
in terms of efficiency, by inserting Vt randomly selected nodes on
real-world graphs. Here K = 103 and M = 106.

and Krevl, 2014] shown in Table 2.

Compared Methods and Evaluated Metrics: To evaluate
the efficiency of improved strategies proposed in this paper,
we tested and compared four algorithms as follows.
• Truss-Decompostion: an online search approach using

truss decomposition for computing k-truss index from
scratch [Wang and Cheng, 2012].
• Edge-PP: an approach using the edge-insertion algo-

rithm for updating truss index [Huang et al., 2014].
• Vertex-PP: our approach using the node-deletion and

node-insertion for updating truss-index in Algorithm 1.
• Hybrid-PP: our hybrid approach using both Edge-PP

and Vertex-PP for updating truss-index in Algorithm 3.
After updating the index, all of the four methods mentioned

above use the same query method. We compare them by re-
porting the running time in seconds. The less the running
time is, the better the efficiency performance is. We set the
parameter k = 7 by default. We also evaluate the methods by
varying parameters k in {5, 7, 9, 11, 13, 15}.

5.1 Efficiency Evaluation on SNAP Networks
To evaluate the efficiency of the node-insertion algorithm, we
conducted experiments on eight SNAP graph datasets in Ta-
ble 2. Due to no available private information in these net-
works, we randomly generated private edges as follows. We
divided nodes into 40 bins by their degree and took 50 ran-
domly selected nodes from each bin. Bin set was defined as
{B1, B2, . . . B40} where Bi = {v : i−1

40 < d(v)
∆ ≤ i

40}
with ∆ = maxv∈V {d(v)}. Let G = (V,E) denote the
initial graph, and Vt the set of sampled vertices. All edges
with at least one end in Vt was considered to be private.
We ran Truss-Decompostion on the induced subgraph of ver-
tex set V ′ = V \ Vt, then added each node v ∈ Vt using
Algorithm 1, and compared the running time with adding
edges one by one using edge-insertion algorithm. In Table 2,
our node-insertion algorithm significantly outperformed the
edge-insertion method, which achieved 38.67 times speedup

https://github.com/samjjx/pp-data
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Figure 3: Average query time of different methods on PP-DBLP varied by query node degree.
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Figure 4: Average query time of different methods on PP-DBLP varied by parameter k.

on LiveJournal.

5.2 Classification Evaluation
In order to choose the proper classification method to incor-
porate into Hybrid-PP, we tested and compared five classi-
fiers in terms of classification accuracy and training time, as
shown in Table 3. Due to the low training time, high clas-
sification accuracy, and fast query time, Random Forest was
finally used as the classifier of Hybrid-PP.

Classifier Accuracy on PP-DBLP Training
2013 2014 2015 2016 time (s)

Random Forest 84.4% 87.0% 86.5% 87.8% <1
Decision Tree 84.3% 84.6% 84.7% 87.4% <1
SVM 84.1% 84.5% 85.5% 85.2% 1140
k-NN 76.0% 79.6% 78.2% 72.7% <1
Degree Baseline 69.5% 69.2% 71.8% 67.2% <1

Table 3: Accuracy of different classifiers on PP-DBLP 2013-2016.

5.3 Efficiency Evaluation on PP-DBLP Networks
We compare the efficiency of four different methods Truss-
Decompostion, Edge-PP, Vertex-PP, and Hybrid-PP on
real-world public-private datasets of PP-DBLP. Hybrid-PP
adopted a Random Forest with 51 estimators and a maxi-
mum depth of 11 to construct a classifier. The Hybrid-PP
used to answer queries on each PP-DBLP dataset was trained
based on runtimes of Vertex-PP and Edge-PP on sampled
nodes from the other three datasets. We first divided all
nodes into 100 × 100 bins by their public and private de-
grees, and then randomly took four nodes from each bin.
Bin set was {Bi,j : 1 ≤ i, j ≤ 100} each bin defined as
Bi,j = {v : i−1

100 < d(v)
∆ ≤ i

100 ,
j−1
100 <

dp(v)
∆p
≤ j

100} where

∆ is the maximum public degree, ∆p is the maximum private
degree, and dp(v) is the private degree of node v. In total
1836± 58 nodes were selected on each PP-DBLP datasets.

Vary Node Degree. We compared four proposed algorithms
on sampled nodes. For better visualization and comparison,
sampled nodes were divided into five equally sized groups by
node degrees in their pp-graphs, each group taking 20% of
sampled nodes, and the average query time of algorithms on
each group is reported in Figure 3. On higher degree nodes,
Edge-PP takes much longer than Vertex-PP, and becomes
less useful for Hybrid-PP; hence the gap between Hybrid-PP
and Vertex-PP decreases as Vertex-PP becomes the optimal
choice for the classifier on higher degree nodes.

Vary Parameter k. The average query time varied by k is re-
ported in Figure 4. Hybrid-PP and Vertex-PP perform much
better than Edge-PP and Truss-Decompostion for all k values
and datasets. Hybrid-PP is the fastest due to using Edge-PP
in cases where Vertex-PP works worse than Edge-PP.

6 Conclusions
This paper studies the problem of finding k-truss on public-
private graphs. We develop a novel hybrid algorithm of k-
truss updating with node/edge insertions/deletions. This work
opens up several interesting problems. First, developing fur-
ther efficient and clever algorithms for finding k-truss in pp-
graphs is important, instead of deleting and re-inserting nodes
as Vertex-PP. Second, finding other kinds of dense sub-
graphs on public-private graph is also wide open.
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